【扩散模型】5、Diffusion models beat GAN | 使用类别引导图像生成

本文主要是介绍【扩散模型】5、Diffusion models beat GAN | 使用类别引导图像生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

论文:Diffusion models beat GAN on image Synthesis

代码:https://github.com/openai/guided-diffusion

出处:OPENAI | NIPS2021

时间:2021

贡献:

  • 在本文章之前,扩散模型生成的图片已经非常逼真了,但是 inception score(IS FID等)不如GAN,如何提供一些人为指导来帮助模型采样和学习,提高分数和采样速度就是本文的出发点
  • 作者引入了 classifier guidance 模式,将扩散模型变成了 class-conditional 任务,使用分类梯度来指导扩散模型的生成,平衡了多样性和保真性,降低了扩散模型的采样时间,同时能提高高分辨率情况下的采样效果

一、背景

在近几年来,生成式模型已经能生成类似人类的自然语音、声音、音乐,也能生成高质量的图像

GAN[19] 在当时来说是很多图像生成任务的 SOTA,其评判标准都是例如 FID、Inception Score、Precision 等简单标准

但这些标准很难完全捕捉到图像之间的差异,而且 GAN 也被证明捕捉到的差异性比很多 likelihood-based 方法能够捕捉到的更少一些,而且 GAN 比较难以训练,一旦没有仔细的设置参数和规则,就容易崩塌

扩散模型就是 likelihood-based 方法的一种,其通过逐步从图像信号中移除噪声来生成图片,其训练的目标函数可以被看做一个重参数化的变分下届,扩散模型在 CIFAR-10 上已经得到了 SOTA,但是在 LSUN 和 ImageNet 这些比较难的数据集上比 GAN 稍微落后一点。

作者认为,扩散模型和 GAN 之间的差距主要由于下面两个因素,也是基于这两个因素,作者对 diffusion model 进行了改进:

  • GAN 的模型结构已经被探索和改进了很多了
  • GAN 能更好的平衡多样性和保真度,产生高质量的样本,但不覆盖整个分布

在这里插入图片描述

二、方法

2.1 扩散模型回顾

扩散模型是通过从一个渐进加噪声的逆过程来采样的,也就是说,最开始的时候从噪声 x T x_T xT 中开始采样,然后逐步得到噪声更少的 x T − 1 x_{T-1} xT1 x T − 2 x_{T-2} xT2 … ,直到得到最终的采样结果 x 0 x_0 x0

扩散模型就是在学习如何从 x t x_t xt 得到上一时刻的 x t − 1 x_{t-1} xt1,扩散模型可以被建模为 ϵ θ ( x t , t ) \epsilon_{\theta}(x_t, t) ϵθ(xt,t),表示预测到的当前时刻的噪声,训练目标函数是 ∣ ∣ ϵ θ ( x t , t ) − ϵ ∣ ∣ 2 ||\epsilon_{\theta}(x_t, t) - \epsilon||^2 ∣∣ϵθ(xt,t)ϵ2 ϵ \epsilon ϵ 是真实噪声

2.2 简单的质量测评标准

1、Inception Score(IS)

Inception Score (IS) 是用来衡量一个模型在生成单个类别的样本时能否很好地捕获整个 ImageNet 类别分布

然而,该指标有一个缺点,它并不奖励覆盖整个分布的行为,也不会奖励在一个类别中捕获很多多样性的行为,如果模型记住全数据集一小部分,仍然会有高 IS

2、FID

为了比 IS 更好地捕获多样性,Heusel等人[23] 提出了 Fréchet Inception Distance (FID),他们认为 FID 与人类判断更一致。FID 提供了一个对两个图像分布在 Inception-V3 [62] 潜空间中距离的对称度量

Nash 等人[42] 提出了 sFID 作为使用空间特征而非标准汇集特征的 FID 版本。他们发现这种指标更好地捕获了空间关系, 奖励具有连贯高级结构的图像分布

作者使用 FID 作为评判指标,因为其能同时捕捉样本的多样性和保真性

作者还使用了 Precision 或 IS 来衡量保真性,使用 Recall 来衡量多样性或分布范围

2.3 模型架构改进

作者为了获得简单有效的模型架构,进行了多种不同的架构消融实验

因为扩散模型使用的是 U-Net,所以作者主要对 U-Net 的结构进行了改进

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

虽然增加模型深度能提高效果,但训练时长增加了,所以不做模型深度的改变

作者还对比了使用不同 head 的效果,最终使用了 64
在这里插入图片描述
在这里插入图片描述

2.4 Classifier Guidance

GAN 用于条件合成时,除了精心设计结构外,还会使用很多 class labels,所以作者也想使用分类器来提升扩散模型的效果

方法:作者会在带噪声的图像 x t x_t xt 上训练一个分类器,然后使用梯度来指导扩散模型的采样过程来朝着对应类别进行采样,作者这里使用的 ImageNet

本文方法不用额外训练扩散模型,直接在原有训练好的扩散模型上,通过外部的分类器来引导生成期望的图像。唯一需要改动的地方其实只有 sampling 过程中的高斯采样的均值,也即采样过程中,期望噪声图像的采样中心越靠近判别器引导的条件越好。

使用分类模型对生成的图片进行分类,得到预测分数与目标类别的交叉熵,将其对带噪图像求梯度用梯度引导下一步的生成采样。

在这里插入图片描述

三、效果

在这里插入图片描述

在这里插入图片描述

这篇关于【扩散模型】5、Diffusion models beat GAN | 使用类别引导图像生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363957

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE