讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛-三等奖方案

本文主要是介绍讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛-三等奖方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本文公开了”讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛“赛道的技术方案,本次比赛主要采用pdf解析特征工程的方法,通过使用lightgbm的树模型10折交叉验证进行二分类的任务,最终取得三等奖的成绩。

一、赛题任务

简历智能化判断,需要大量的数据集作为支撑,同时简历的半结构化数据特点和多变的简历风格给简历智能化判断带来了挑战,本次大赛将提供脱敏的学生中文简历数据集(pdf或docx格式)作为训练样本,参赛选手需要基于提供的样本数据构建模型,预测简历是否符合简历投递基本要求。任务如下:

简历完整性检测。根据要求提取简历要素特征数据,并根据样本数据构建模型,预测简历是否符合简历投递基本要求,预测结果可分为两个类别:即完整(标签1)不完整(标签0)

二、数据和评价指标

数据:脱敏后的学生简历数据集(pdf或docx格式)。训练数据提供脱敏后的数据集,共800余份。测试集不可见,由真实简历数据组成,共100余份。训练集全部为pdf格式。

注:数据集分为正样本负样本,其中正样本为完整性简历数据集,符合简历投递基本要求;负样本为不完整简历数据集,不符合简历投递基本要求。

评价指标:F1 score

三、方案

3.1.方案概述

本次比赛主要采用pdf解析和特征工程的方法,通过使用lightgbm的树模型10折交叉验证进行二分类的任务。

3.2.pdf2text解析

本次比赛主要实验了以下几种解析工具,最终最高分选择了pymupdf

  • pdfplumber
  • PyPDF2
  • pymupdf

3.3.特征工程

主要文本特征如下:

  • 页数

  • pdf2text的文本长度

  • 按行切分后的平均长度

  • 按行切分后的最大长度

  • 按行切分后的长度标准差

  • text字符集合的大小

  • pdf2text的文本长度-text字符集合的大小

  • text字符集合的大小/(pdf2text的文本长度+1)

  • text空格切分后的列表大小

  • text换行符切分后的列表大小

  • -的数量

  • x的数量

  • xxx的数量

  • 数字的数量

  • @的数量

  • .com的数量

  • *的数量

  • :的数量

  • ****的数量

  • 正则匹配电话号码的数量

特征提取对应的code

pattern = r"[\D]+(1\d{10})+(?!\d)"def extract_feature_from_pdf(path):doc = fitz.open(path)all_content = []page_nums = 0for i in doc.pages():page_nums += 1all_content.append(i.get_text())text = ''.join(all_content)text = ''.join(text.split('\n'))feat = [page_nums,len(text),np.mean([len(x) for x in text.split('\n')]),np.max([len(x) for x in text.split('\n')]),np.std([len(x) for x in text.split('\n')]),len(set(text)),len(text) - len(set(text)),len(set(text)) / (len(text) + 1),len(text.split()),len(text.split('\n')),text.count('-'),text.count('x'),text.count('xxx'),sum([text.count(x) for x in '0123456789']),text.count('@'),text.count('.com'),text.count('*'),text.count(':'),text.count('****'),len(re.compile(pattern).findall(text)),1 if '正样本' in path else 0,]return feat

3.4.训练代码

本次比赛主要使用的是lightgbm的树模型,视为二分类任务,进行10折交叉验证的训练。

#!/usr/bin/env python
# _*_coding:utf-8_*_
# Author   :    Junhui Yuimport warningswarnings.simplefilter('ignore')import gcimport pandas as pdpd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 100)from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, classification_reportimport lightgbm as lgbimport globimport pandas as pd
from tqdm import tqdm
import numpy as np
import re
import fitzpattern = r"[\D]+(1\d{10})+(?!\d)"def extract_feature_from_pdf(path):doc = fitz.open(path)all_content = []page_nums = 0for i in doc.pages():page_nums += 1all_content.append(i.get_text())text = ''.join(all_content)text = ''.join(text.split('\n'))feat = [page_nums,len(text),np.mean([len(x) for x in text.split('\n')]),np.max([len(x) for x in text.split('\n')]),np.std([len(x) for x in text.split('\n')]),len(set(text)),len(text) - len(set(text)),len(set(text)) / (len(text) + 1),len(text.split()),len(text.split('\n')),text.count('-'),text.count('x'),text.count('xxx'),sum([text.count(x) for x in '0123456789']),text.count('@'),text.count('.com'),text.count('*'),text.count(':'),text.count('****'),len(re.compile(pattern).findall(text)),1 if '正样本' in path else 0,]return feattrain_paths = glob.glob('../xfdata/校招简历信息完整性检测训练集/*/*.pdf')df_train = pd.DataFrame(columns=['page_nums','text_len','text_len_mean','text_len_max','text_len_std','text_set_len','lentext-lenset','lenset_div_lentext','text_split_len','text_split_ent_len','-_nums','x_nums','xxx_nums','dig_sum','@_nums','.com_nums','*_nums',':_nums','****_nums','phone_nums','label'])for t_p in tqdm(train_paths):df_train.loc[len(df_train)] = extract_feature_from_pdf(t_p)not_use_feats = ['label']
use_features = [col for col in df_train.columns if col not in not_use_feats]
print(len(use_features))
train = df_train[df_train['label'].notna()]NUM_CLASSES = 2
FOLDS = 10
TARGET = 'label'def run_lgb(df_train, use_features):target = TARGEToof_pred = np.zeros((len(df_train), NUM_CLASSES))folds = StratifiedKFold(n_splits=FOLDS, shuffle=True, random_state=42)for fold, (tr_ind, val_ind) in enumerate(folds.split(train, train[TARGET])):print(f'Fold {fold + 1}')x_train, x_val = df_train[use_features].iloc[tr_ind], df_train[use_features].iloc[val_ind]y_train, y_val = df_train[target].iloc[tr_ind], df_train[target].iloc[val_ind]train_set = lgb.Dataset(x_train, y_train)val_set = lgb.Dataset(x_val, y_val)params = {'learning_rate': 0.1,'metric': 'multiclass','objective': 'multiclass','num_classes': NUM_CLASSES,'feature_fraction': 0.75,'bagging_fraction': 0.75,'bagging_freq': 2,'n_jobs': -1,'seed': 1029,'max_depth': 10,'num_leaves': 100,'lambda_l1': 0.5,'lambda_l2': 0.8,'verbose': -1}model = lgb.train(params,train_set,num_boost_round=500,early_stopping_rounds=100,valid_sets=[train_set, val_set],verbose_eval=100)oof_pred[val_ind] = model.predict(x_val)print('acc:', accuracy_score(np.argmax(oof_pred, axis=1), df_train['label']))del x_train, x_val, y_train, y_val, train_set, val_setgc.collect()return oof_pred, modeloof_pred, model = run_lgb(train, use_features)
print(classification_report(np.argmax(oof_pred, axis=1), df_train['label']))model.save_model('model.txt')

3.5.推理代码

#!/usr/bin/env python
# _*_coding:utf-8_*_
# Author   :    Junhui Yuimport globimport pandas as pd
import numpy as np
import re
import fitzimport lightgbm as lgbpatter = r"[\D]+(1\d{10})+(?!\d)"def extract_feature_from_pdf(path):doc = fitz.open(path)all_content = []page_nums = 0for i in doc.pages():page_nums += 1all_content.append(i.get_text())text = ''.join(all_content)text = ''.join(text.split('\n'))feat = [page_nums,len(text),np.mean([len(x) for x in text.split('\n')]),np.max([len(x) for x in text.split('\n')]),np.std([len(x) for x in text.split('\n')]),len(set(text)),len(text) - len(set(text)),len(set(text)) / (len(text) + 1),len(text.split()),len(text.split('\n')),text.count('-'),text.count('x'),text.count('xxx'),sum([text.count(x) for x in '0123456789']),text.count('@'),text.count('.com'),text.count('*'),text.count(':'),text.count('****'),len(re.compile(patter).findall(text)),1 if '正样本' in path else 0,]return featdf = pd.DataFrame(columns=['page_nums','text_len','text_len_mean','text_len_max','text_len_std','text_set_len','lentext-lenset','lenset_div_lentext','text_split_len','text_split_ent_len','-_nums','x_nums','xxx_nums','dig_sum','@_nums','.com_nums','*_nums',':_nums','****_nums','phone_nums','label'])test_paths = glob.glob('/work/data/integrity-check-of-resume-test-set/*.pdf')[:]for t_f in test_paths:df.loc[len(df)] = extract_feature_from_pdf(t_f)not_use_feats = ['label']
use_features = [col for col in df.columns if col not in not_use_feats]model = lgb.Booster(model_file='model.txt')y_pred = model.predict(df[use_features])predict_label = np.argmax(y_pred, axis=1)pd.DataFrame({'ResumeID': [x.split('/')[-1] for x in test_paths],'label': predict_label.astype(int)
}).to_csv('/work/output/result.csv', index=None)

3.6.特征重要度与f1-score

                feature  split       gain
16              *_nums     96  23.080862
15           .com_nums     68  15.428008
6       lentext-lenset    126  12.632440
7   lenset_div_lentext    222  10.997545
13             dig_sum    218   7.045122
1             text_len    110   4.449556
17              :_nums    179   4.178767
8       text_split_len    165   4.169549
10              -_nums    137   3.483447
5         text_set_len    184   3.018025
14              @_nums     13   2.870494
11              x_nums     94   2.141016
19          phone_nums     16   1.668496
18           ****_nums     12   1.608449
12            xxx_nums     24   1.249654
2        text_len_mean     31   1.066294
0            page_nums     31   0.803168
3         text_len_max      5   0.109109
9   text_split_ent_len      0   0.000000
4         text_len_std      0   0.000000precision    recall  f1-score   support0       0.75      0.84      0.79       1051       0.98      0.96      0.97       710accuracy                           0.94       815macro avg       0.86      0.90      0.88       815
weighted avg       0.95      0.94      0.94       815

四、延伸

本次比赛任务相对简单,如果真正做到应用级别还需要考虑更多维度综合对简历的完整性进行评价。比如:简历中核心字段的填充率、设计简历中核心字段的重要性权值等等多维度信息。涉及技术可能有基于实体识别的简历解析(从本文特征工程也可以看出)技术等。

结论

本文仅记录8月份参与该比赛思路,至于代码也很普通。该比赛任务由于比较简单,线下指标虚高,训练数据与线上评测数据较少(耐心做特征工程分数可以非常高),并且技术价值不高。因此,前前后后投入差不多一个小时左右时间速刷了一下,最后偶然获奖。

参考文献

【1】校招简历信息完整性检测挑战赛:https://challenge.xfyun.cn/topic/info?type=information-integrity&option=ssgy

这篇关于讯飞AI算法挑战大赛-校招简历信息完整性检测挑战赛-三等奖方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363918

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir