AD9371 官方例程 NO-OS 主函数 headless 梳理(二)

2023-11-07 10:12

本文主要是介绍AD9371 官方例程 NO-OS 主函数 headless 梳理(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AD9371 系列快速入口

AD9371+ZCU102 移植到 ZCU106 : AD9371 官方例程构建及单音信号收发

ad9371_tx_jesd -->util_ad9371_xcvr接口映射: AD9371 官方例程之 tx_jesd 与 xcvr接口映射

AD9371 官方例程 时钟间的关系与生成 : AD9371 官方例程HDL详解之JESD204B TX侧时钟生成(一)

JESD204B相关IP端口信号 : AD9371 官方例程HDL JESD204B相关IP端口信号

裸机程序配置 AD9528、AD9371、FPGA IP: AD9371 官方例程裸机SW 和 HDL配置概述(一)

裸机程序配置 AD9528、AD9371、FPGA IP: AD9371 官方例程裸机SW 和 HDL配置概述(二)

裸机程序配置 AD9528、AD9371、FPGA IP: AD9371 官方例程裸机SW 和 HDL配置概述(三)

文章目录

  • 六、AD9371 初始化步骤
    • 6.11 使能 Rx 和 ORx 接收 SYSREF
    • 6.12 关闭 TX Deframer SYSREF 、复位 Deframer
    • 6.13 使能FPGA 中JESD TX 的物理层
    • 6.14 使能FPGA 中JESD TX 的链路层
    • 6.15 使能 AD9371 的Deframer 接收 SYSREF,并产生SYSREF脉冲
    • 6.16 使能FPGA 中 RX和RX_OS JESD的物理层和链路层
    • 6.17 请求SYSREF脉冲
    • 6.18 检查 AD9371的 Framer 和 Deframer 状态
    • 6.19 启用跟踪校准
    • 6.20 AD9371 进入 radio on 状态
    • 6.21 ObsRx 路径设置为 OBS_INTERNAL_CALS
    • 6.21 验证硬件平台的同步和链接状态


AD9371 官方例程 NO-OS 主函数 headless 梳理(一),DAC(TX) 对于FPGA 是 framer ,对于AD9371是 Deframer 。ADC时相反。

执行 MCS 时发送的 SYSREF 脉冲用于多个AD9371之间的多芯片同步,但由于 【6.4节执行 MCS】 代码运行时 AD9371 的 framers/deframers 还不能接收 SYSREF 信号 。并且 FPGA 中 JESD204B 的物理层 和 链路层等IP还未使能,不能工作,所以确定性延时这一步并未完成,还需要 SYSREF 脉冲来复位同步 AD9371和FPGA链路层中的LMFC,以保证确定性延迟。

六、AD9371 初始化步骤

6.11 使能 Rx 和 ORx 接收 SYSREF

Rx和ORx Framer 忽略 SYSREF (enable = 0),令enable = 1,允许设备外部的SYSREF(AD9528)到达 Rx 和 ORx framer 中的SYSREF输入端口,等待 SYSREF,以便开始从 AD9371的 Rx和ORx Framer 传输 CGS (K码)

	MYKONOS_enableSysrefToRxFramer(&mykDevice,1)MYKONOS_enableSysrefToObsRxFramer(&mykDevice,1)

6.12 关闭 TX Deframer SYSREF 、复位 Deframer

对 Deframer 复位 ,来清除之前检测到的 disparity bit 错误。并且如果FPGA内部的SERDES锁相环复位,则可能导致lane fifo 上溢/下溢,也需要复位 Deframer

	MYKONOS_enableSysrefToDeframer(&mykDevice,0)		MYKONOS_resetDeframer(&mykDevice)		

6.13 使能FPGA 中JESD TX 的物理层

adxcvr_write(xcvr, ADXCVR_REG_RESETN, 1),解除 JESD 物理层 ip 复位信号,使其逻辑工作,up_resetn 为1后,等几个时钟后,up_pll_rst 变为 0,其连接QPLL,QPLL0RESET (up_qpll_rst), 0 复位失效,使物理层QPLL 工作 ,RX 类似,CPLLPD (up_cpll_rst), adxcvr_clk_enable(rx_adxcvr) CPLL解除复位

    if (up_rstn == 0) beginup_resetn <= 'd0;end else beginif ((up_wreq == 1'b1) && (up_waddr == 10'h004)) beginup_resetn <= up_wdata[0];end
    adxcvr_clk_enable(tx_adxcvr);

6.14 使能FPGA 中JESD TX 的链路层

axi_jesd204_tx_write(jesd, JESD204_TX_REG_LINK_DISABLE, 0x0),解除链路层复位信号 ,up_reset_core 为 0 后,解除 core_reset_all 复位信号,进而 core_reset 变为0,解除 链路层主逻辑 axi_ad9371_tx_jesd/tx IP 的复位信号,JESD 链路层主逻辑开始工作,现在 FPGA 中的 JESD 链路层和物理层已经开始工作,链路中的 serializer 可以输出 K 字符(CGS)

    12'h030: up_reset_core <= up_wdata[0];core_reset_vector <= {1'b0,core_reset_vector[4:1]};core_reset = core_reset_vector[0];
    axi_jesd204_tx_lane_clk_enable(tx_jesd);

6.15 使能 AD9371 的Deframer 接收 SYSREF,并产生SYSREF脉冲

允许设备外部的SYSREF(AD9528)到达 AD9371 的 TX Deframer 中的SYSREF输入端口,等待 SYSREF脉冲,完成 [AD9371 的 Deframer 和 FPGA 中TX链路层 ] 各自的LMFC 同步复位,保证 DAC 链路的 确定性延迟

同时 AD9371 的 Rx和ORx Framer 开始传输 K 字符(CGS )

    MYKONOS_enableSysrefToDeframer(&mykDevice,1)AD9528_requestSysref(clockAD9528_device, 1);no_os_mdelay(1);

6.16 使能FPGA 中 RX和RX_OS JESD的物理层和链路层

同TX,使能 FPGA中RX和RX_OS 链路层和物理层的 主逻辑,使其工作,但对链路层而言,由于还没有接收到 SYSREF 脉冲 ,链路将保持在CGS状态。

	adxcvr_clk_enable(rx_adxcvr);axi_jesd204_rx_lane_clk_enable(rx_jesd);adxcvr_clk_enable(rx_os_adxcvr);axi_jesd204_rx_lane_clk_enable(rx_os_jesd);

6.17 请求SYSREF脉冲

请求SYSREF脉冲,完成 [ AD9371 RX和RX_OS framer 和 FPGA 中RX和RX_OS 链路层 ] 各自的LMFC 同步复位,保证 ADC 链路的 确定性延迟

	AD9528_requestSysref(clockAD9528_device, 1);no_os_mdelay(1);AD9528_requestSysref(clockAD9528_device, 1);no_os_mdelay(5);

SYSREF频率必须与LMFC之间呈整数倍关系

6.18 检查 AD9371的 Framer 和 Deframer 状态

	MYKONOS_readRxFramerStatus(&mykDevice,&framerStatus)MYKONOS_readOrxFramerStatus(&mykDevice,&obsFramerStatus)MYKONOS_readDeframerStatus(&mykDevice,&deframerStatus)

6.19 启用跟踪校准

选择在 radioOn 状态期间使用哪些跟踪校准,必须在 radioOff 状态下设置

 * enableMask  |  Bit description*        [0]  | TRACK_RX1_QEC*        [1]  | TRACK_RX2_QEC*        [2]  | TRACK_ORX1_QEC*        [3]  | TRACK_ORX2_QEC*        [4]  | TRACK_TX1_LOL*        [5]  | TRACK_TX2_LOL*        [6]  | TRACK_TX1_QEC*        [7]  | TRACK_TX2_QEC*        [8]  | TRACK_TX1_DPD*        [9]  | TRACK_TX2_DPD*       [10]  | TRACK_TX1_CLGC*       [11]  | TRACK_TX2_CLGC*       [12]  | TRACK_TX1_VSWR*       [13]  | TRACK_TX2_VSWR*       [16]  | TRACK_ORX1_QEC_SNLO*       [17]  | TRACK_ORX2_QEC_SNLO*       [18]  | TRACK_SRX_QECuint32_t trackingCalMask = TRACK_ORX1_QEC | TRACK_ORX2_QEC | TRACK_RX1_QEC |TRACK_RX2_QEC | TRACK_TX1_QEC | TRACK_TX2_QEC;MYKONOS_enableTrackingCals(&mykDevice,trackingCalMask)

6.20 AD9371 进入 radio on 状态

AD9371 转入 radio on 状态,使能的(之前配置的使能链路) Rx和Tx信号链 将上电,并且开始之前设置的跟踪校准,要退出 radio on 状态回到低功耗,可以使用 MYKONOS_radioOff() 函数。

    MYKONOS_radioOn(&mykDevice)

6.21 ObsRx 路径设置为 OBS_INTERNAL_CALS

Tx校准只有在 radioOn状态 ,并且 obsRx 路径设置为OBS_INTERNAL_CALS时,才能运行。通过下面函数在 radioOn 状态下启动或关闭Obs Rx信号链,先关闭当前 obsRx 路径,再更改到所需的 obsRx 路径

  	MYKONOS_setObsRxPathSource(&mykDevice,OBS_RXOFF)MYKONOS_setObsRxPathSource(&mykDevice,OBS_INTERNALCALS)

6.21 验证硬件平台的同步和链接状态

未完。。。

这篇关于AD9371 官方例程 NO-OS 主函数 headless 梳理(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/362931

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错