基于翻筋斗觅食策略的灰狼优化算法

2023-11-07 00:20

本文主要是介绍基于翻筋斗觅食策略的灰狼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、GWO算法
    • 2、改进GWO算法
      • (1)动态扰动因子策略
      • (2)翻筋斗觅食策略
    • 3、DSF-GWO算法步骤
  • 二、实验测试及分析
  • 三、参考文献

一、理论基础

1、GWO算法

请参考这里。

2、改进GWO算法

(1)动态扰动因子策略

本文将引入新的动态扰动因子策略以确保精度,扰动因子 E E E如式(1)所示,更新后的 A A A如式(2)所示。 E = r a n d n ⋅ ( sin ⁡ ω ( π 2 ⋅ t t max ⁡ ) + cos ⁡ ( π 2 ⋅ t t max ⁡ ) − 1 ) (1) E=randn\cdot\left(\sin^\omega(\frac\pi2\cdot\frac{t}{t_{\max}})+\cos(\frac\pi2\cdot\frac{t}{t_{\max}})-1\right)\tag{1} E=randn(sinω(2πtmaxt)+cos(2πtmaxt)1)(1) A = a ( 2 r 1 − 1 ) + E (2) A=a(2r_1-1)+E\tag{2} A=a(2r11)+E(2)其中, r a n d n randn randn表示服从标准正态分布的随机数; ω \omega ω表示某一常数,它决定了扰动因子峰值的位置。
图1可以看出不同 ω \omega ω值的扰动因子振幅情况,振幅随着 ω \omega ω的增加而减小,最早出现较大振幅的是 ω = 2 \omega=2 ω=2的扰动因子。
在这里插入图片描述

图1 不同 ω \omega ω下扰动因子 E E E的变化

从图中可以看出,当 ω = 2 \omega=2 ω=2时, ∣ A ∣ |A| A在迭代后期会突然大于1,且扰动因子的振幅较大,严重影响了收敛性;当 ω = 3 \omega=3 ω=3时,扰动因子的振幅较小,后期跳出局部最优的能力会变弱,但是并不影响算法本身的性能;当 ω = 2.5 \omega=2.5 ω=2.5时,可以看出收敛性能略有提升。
图2为不同 ω \omega ω值下 A A A的数值的变化。
在这里插入图片描述

(a) ω \omega ω=2

在这里插入图片描述
(a) ω \omega ω=2.5

在这里插入图片描述
(a) ω \omega ω=3

图2 不同w下A的数值变化

(2)翻筋斗觅食策略

由于灰狼优化算法后期易陷入局部最优,针对这个问题受到蝠鲼觅食的启发,引入较为新颖的翻筋斗觅食策略来改善GWO算法跳出局部最优的能力。这种捕猎行为,可以将猎物视为一个支点,每次捕猎将会更新到当前位置与对称于支点对面位置的某一位置,数学模型如下: x i d ( t + 1 ) = x i d ( t ) + S ⋅ ( r 1 x b e s t d − r 2 x i d ( t ) ) (3) x_i^d(t+1)=x_i^d(t)+S\cdot(r_1x_{best}^d-r_2x_i^d(t))\tag{3} xid(t+1)=xid(t)+S(r1xbestdr2xid(t))(3)其中, S S S表示空翻因子,决定了翻到猎物对面的位置,取 S = 2 S =2 S=2 x b e s t d x_{best}^d xbestd为猎物位置; N N N为狼群数量; d d d为维度; r 1 r_1 r1 r 2 r_2 r2为两个在 [ 0 , 1 ] [0,1] [0,1]的随机数。
在每一次的迭代中,当前灰狼位置 x i d ( t ) x_i^d(t) xid(t)会与其跳跃支点后的灰狼进行适应度对比,如果此时已经陷入局部最优,则灰狼位置 x i d ( t ) x_i^d(t) xid(t)可能会被跳跃支点后的灰狼取代(取决于适应度值),而随着迭代的进行,被取代的概率就越大,跳出局部最优的效果就越明显。与反向学习策略不同的是,翻筋斗策略在更新位置时是围绕最优狼进行的,这使得算法具有更强的收敛性。

3、DSF-GWO算法步骤

DSF-GWO算法步骤如下:
a)初始化灰狼种群参数,包括灰狼种群规模 N N N、最大迭代次数 t max ⁡ t_{\max} tmax、空间维度 d i m dim dim、搜索空间的上下限 u b ub ub l b lb lb
b)计算狼群个体适应度值并确定 α \alpha α β \beta β δ \delta δ
c)更新参数 C C C,通过式(2)更新添加扰动因子的参数 A A A
d)更新狼群和猎物位置。
e)判断条件 t / t max ⁡ t/t_{\max} t/tmax是否大于 r a n d rand rand,是则根据式(3)进行翻筋斗计算,然后合并比较,通过升序筛选出新适应度值;否则直接跳至步骤f)。
f)跳到步骤b)直到满足终止条件,即计算到最大迭代次数 t max ⁡ t_{\max} tmax
g)输出最优解 α \alpha α狼的位置和适应度值。

二、实验测试及分析

为测试DSF-GWO算法的寻优性能,将其与GWO算法、WOA算法进行对比,以文献[1]中的f2~f4(单峰)、f9~f11(多峰)为例。设置狼群数量为30,维度为30,最大迭代次数为500,每个算法独立运算30次,取这30次计算的最差值、最优值、平均值及标准差。
对比结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F2
DSF-GWO:最差值: 7.3304e-214,最优值:3.3382e-229,平均值:3.3373e-215,标准差:0
GWO:最差值: 8.2894e-18,最优值:1.6797e-19,平均值:1.7635e-18,标准差:1.6031e-18
WOA:最差值: 6.6291e-50,最优值:4.5475e-59,平均值:3.0107e-51,标准差:1.2234e-50
函数:F3
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 0.019131,最优值:1.3037e-05,平均值:0.0042121,标准差:0.0057549
WOA:最差值: 74821.4487,最优值:3538.8338,平均值:37942.7239,标准差:15983.9549
函数:F4
DSF-GWO:最差值: 4.4994e-201,最优值:1.6184e-216,平均值:1.5271e-202,标准差:0
GWO:最差值: 0.0002624,最优值:3.4902e-06,平均值:6.067e-05,标准差:7.0227e-05
WOA:最差值: 91.8094,最优值:0.12971,平均值:52.7425,标准差:30.3577
函数:F9
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 99.3297,最优值:3.7731,平均值:23.7643,标准差:17.8935
WOA:最差值: 5.6843e-14,最优值:0,平均值:1.8948e-15,标准差:1.0378e-14
函数:F10
DSF-GWO:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
GWO:最差值: 2.931e-14,最优值:1.5099e-14,平均值:2.0783e-14,标准差:3.3118e-15
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:4.204e-15,标准差:2.6279e-15
函数:F11
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 0.027149,最优值:0,平均值:0.0042574,标准差:0.008293
WOA:最差值: 1.1102e-16,最优值:0,平均值:3.7007e-18,标准差:2.027e-17

从图和表结合来看,DSF-GWO算法在收敛精度以及收敛速度两方面均有优势,证实了本文的改进是有效的。

三、参考文献

[1] 王正通, 程凤芹, 尤文, 等. 基于翻筋斗觅食策略的灰狼优化算法[J]. 计算机应用研究, 2021, 38(5): 1434-1437.

这篇关于基于翻筋斗觅食策略的灰狼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359993

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO