基于翻筋斗觅食策略的灰狼优化算法

2023-11-07 00:20

本文主要是介绍基于翻筋斗觅食策略的灰狼优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、GWO算法
    • 2、改进GWO算法
      • (1)动态扰动因子策略
      • (2)翻筋斗觅食策略
    • 3、DSF-GWO算法步骤
  • 二、实验测试及分析
  • 三、参考文献

一、理论基础

1、GWO算法

请参考这里。

2、改进GWO算法

(1)动态扰动因子策略

本文将引入新的动态扰动因子策略以确保精度,扰动因子 E E E如式(1)所示,更新后的 A A A如式(2)所示。 E = r a n d n ⋅ ( sin ⁡ ω ( π 2 ⋅ t t max ⁡ ) + cos ⁡ ( π 2 ⋅ t t max ⁡ ) − 1 ) (1) E=randn\cdot\left(\sin^\omega(\frac\pi2\cdot\frac{t}{t_{\max}})+\cos(\frac\pi2\cdot\frac{t}{t_{\max}})-1\right)\tag{1} E=randn(sinω(2πtmaxt)+cos(2πtmaxt)1)(1) A = a ( 2 r 1 − 1 ) + E (2) A=a(2r_1-1)+E\tag{2} A=a(2r11)+E(2)其中, r a n d n randn randn表示服从标准正态分布的随机数; ω \omega ω表示某一常数,它决定了扰动因子峰值的位置。
图1可以看出不同 ω \omega ω值的扰动因子振幅情况,振幅随着 ω \omega ω的增加而减小,最早出现较大振幅的是 ω = 2 \omega=2 ω=2的扰动因子。
在这里插入图片描述

图1 不同 ω \omega ω下扰动因子 E E E的变化

从图中可以看出,当 ω = 2 \omega=2 ω=2时, ∣ A ∣ |A| A在迭代后期会突然大于1,且扰动因子的振幅较大,严重影响了收敛性;当 ω = 3 \omega=3 ω=3时,扰动因子的振幅较小,后期跳出局部最优的能力会变弱,但是并不影响算法本身的性能;当 ω = 2.5 \omega=2.5 ω=2.5时,可以看出收敛性能略有提升。
图2为不同 ω \omega ω值下 A A A的数值的变化。
在这里插入图片描述

(a) ω \omega ω=2

在这里插入图片描述
(a) ω \omega ω=2.5

在这里插入图片描述
(a) ω \omega ω=3

图2 不同w下A的数值变化

(2)翻筋斗觅食策略

由于灰狼优化算法后期易陷入局部最优,针对这个问题受到蝠鲼觅食的启发,引入较为新颖的翻筋斗觅食策略来改善GWO算法跳出局部最优的能力。这种捕猎行为,可以将猎物视为一个支点,每次捕猎将会更新到当前位置与对称于支点对面位置的某一位置,数学模型如下: x i d ( t + 1 ) = x i d ( t ) + S ⋅ ( r 1 x b e s t d − r 2 x i d ( t ) ) (3) x_i^d(t+1)=x_i^d(t)+S\cdot(r_1x_{best}^d-r_2x_i^d(t))\tag{3} xid(t+1)=xid(t)+S(r1xbestdr2xid(t))(3)其中, S S S表示空翻因子,决定了翻到猎物对面的位置,取 S = 2 S =2 S=2 x b e s t d x_{best}^d xbestd为猎物位置; N N N为狼群数量; d d d为维度; r 1 r_1 r1 r 2 r_2 r2为两个在 [ 0 , 1 ] [0,1] [0,1]的随机数。
在每一次的迭代中,当前灰狼位置 x i d ( t ) x_i^d(t) xid(t)会与其跳跃支点后的灰狼进行适应度对比,如果此时已经陷入局部最优,则灰狼位置 x i d ( t ) x_i^d(t) xid(t)可能会被跳跃支点后的灰狼取代(取决于适应度值),而随着迭代的进行,被取代的概率就越大,跳出局部最优的效果就越明显。与反向学习策略不同的是,翻筋斗策略在更新位置时是围绕最优狼进行的,这使得算法具有更强的收敛性。

3、DSF-GWO算法步骤

DSF-GWO算法步骤如下:
a)初始化灰狼种群参数,包括灰狼种群规模 N N N、最大迭代次数 t max ⁡ t_{\max} tmax、空间维度 d i m dim dim、搜索空间的上下限 u b ub ub l b lb lb
b)计算狼群个体适应度值并确定 α \alpha α β \beta β δ \delta δ
c)更新参数 C C C,通过式(2)更新添加扰动因子的参数 A A A
d)更新狼群和猎物位置。
e)判断条件 t / t max ⁡ t/t_{\max} t/tmax是否大于 r a n d rand rand,是则根据式(3)进行翻筋斗计算,然后合并比较,通过升序筛选出新适应度值;否则直接跳至步骤f)。
f)跳到步骤b)直到满足终止条件,即计算到最大迭代次数 t max ⁡ t_{\max} tmax
g)输出最优解 α \alpha α狼的位置和适应度值。

二、实验测试及分析

为测试DSF-GWO算法的寻优性能,将其与GWO算法、WOA算法进行对比,以文献[1]中的f2~f4(单峰)、f9~f11(多峰)为例。设置狼群数量为30,维度为30,最大迭代次数为500,每个算法独立运算30次,取这30次计算的最差值、最优值、平均值及标准差。
对比结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F2
DSF-GWO:最差值: 7.3304e-214,最优值:3.3382e-229,平均值:3.3373e-215,标准差:0
GWO:最差值: 8.2894e-18,最优值:1.6797e-19,平均值:1.7635e-18,标准差:1.6031e-18
WOA:最差值: 6.6291e-50,最优值:4.5475e-59,平均值:3.0107e-51,标准差:1.2234e-50
函数:F3
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 0.019131,最优值:1.3037e-05,平均值:0.0042121,标准差:0.0057549
WOA:最差值: 74821.4487,最优值:3538.8338,平均值:37942.7239,标准差:15983.9549
函数:F4
DSF-GWO:最差值: 4.4994e-201,最优值:1.6184e-216,平均值:1.5271e-202,标准差:0
GWO:最差值: 0.0002624,最优值:3.4902e-06,平均值:6.067e-05,标准差:7.0227e-05
WOA:最差值: 91.8094,最优值:0.12971,平均值:52.7425,标准差:30.3577
函数:F9
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 99.3297,最优值:3.7731,平均值:23.7643,标准差:17.8935
WOA:最差值: 5.6843e-14,最优值:0,平均值:1.8948e-15,标准差:1.0378e-14
函数:F10
DSF-GWO:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
GWO:最差值: 2.931e-14,最优值:1.5099e-14,平均值:2.0783e-14,标准差:3.3118e-15
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:4.204e-15,标准差:2.6279e-15
函数:F11
DSF-GWO:最差值: 0,最优值:0,平均值:0,标准差:0
GWO:最差值: 0.027149,最优值:0,平均值:0.0042574,标准差:0.008293
WOA:最差值: 1.1102e-16,最优值:0,平均值:3.7007e-18,标准差:2.027e-17

从图和表结合来看,DSF-GWO算法在收敛精度以及收敛速度两方面均有优势,证实了本文的改进是有效的。

三、参考文献

[1] 王正通, 程凤芹, 尤文, 等. 基于翻筋斗觅食策略的灰狼优化算法[J]. 计算机应用研究, 2021, 38(5): 1434-1437.

这篇关于基于翻筋斗觅食策略的灰狼优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359993

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买