云智慧联合北航提出智能运维(AIOps)大语言模型及评测基准

本文主要是介绍云智慧联合北航提出智能运维(AIOps)大语言模型及评测基准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着各行业数字化转型需求的不断提高,人工智能、云计算、大数据等新技术的应用已不仅仅是一个趋势。各行业企业和组织纷纷投入大量资源,以满足日益挑剔的市场需求,追求可持续性和竞争力,这也让运维行业迎来了前所未有的挑战和机遇。

如何将LLM的强大特性与特定领域的需求相结合,成为了学术界和工业界密切关注的焦点。近日,云智慧智能研究院与北航合作,共同推出了首个专为运维领域定制的大语言模型——“Owl”,有效提高了IT相关任务在细分领域中的高效性、准确性和理解能力,相关微调和benchmark数据的开源更是为智能运维领域的专属大模型开源发展奠定了坚实基础。

背景介绍

随着IT业务的快速发展,,海量数据有效分析和管理在企业实际业务应用中变得变得日益关键。自然语言处理(NLP)技术已在命名实体识别、机器翻译等任务中显示出非凡的能力,大型语言模型(LLM)在各种 NLP 下游任务中更是取得了显著的改进。此时,基于Owl-Instruct 数据训练而成的大型语言模型——Owl 正好填补了智能运维(AIOps)对专属 LLM 的需求。研究提出了Mixture-of-Adapter strategy策略,以提高不同子领域或任务的微调效果。此外,由于缺乏智能运维领域的大语言模型的Benchmark,本次研究建立了 Owl-Bench 测评基准,同时在Owl-bench和其他运维相关的基准上进行了评估。实验表明,Owl 的性能超过了现有开源模型。

本次研究的主要贡献:

  • 提出了Mixture-of-Adapter strategy策略,以提高不同子领域或任务的微调效果。
  • 构建了智能运维领域的大语言模型的Benchmark:Owl-Bench 测评基准。
  • 实验结果表明,Owl 的性能超过了现有开源模型。

图1: Owl-Instruct数据构建和Owl训练流程

数据收集

第一步:种子数据搜集

基于云智慧智能运维专家丰富的运维经验,精心设计模型微调的数据样例和标注说明,涵盖了信息安全、应用程序、系统架构、软件架构、中间件、网络、操作系统、基础设施和数据库9个运维领域常见数据。在每个领域中,Owl-instruct都包含了不同的任务,例如运维知识问答、部署、监控、故障诊断、性能优化、日志分析、脚本编写、备份和恢复等。最终得到了一个由 2,000 个单轮和 1,000 个多轮对话的种子数据实例组成的语料库。

第二步:数据扩充

对于单轮数据,借鉴Self-Instruct的方法,最终产生了 9118 条数据。对于多轮对话数据,采用 Baize中阐明的方法,最终得到8,740条多轮对话数据。

第三步:数据质量

为了保持严格的数据质量标准,基于扩充的数据,在利用 GPT-4 对标注数据进行评分的同时,组织云智慧智能运维专家进行细致的人工验证。这种双重验证流程可确保生成数据的完整性和可靠性,同时提高数据的整体质量。在利用 GPT-4 进行评分时,针对数据集精心设计了特定的提示(prompt)。这些提示使 GPT-4 能够根据预定义的质量标准对生成的数据进行评估和评分,能够迅速识别并过滤低质量的数据实例。与此同时,数据还经过了由云智慧各智能运维专家组成的审核团的严格人工验证,审核团队会对每个数据条目进行深入评估,这一人工检查过程需要对内容、连贯性以及与特定领域知识的一致性进行彻底检查。

运维评测数据集Owl-Bench 构建

当前,运维领域评估大型语言模型性能的基准仍存在严重不足。为了弥补这一不足,云智慧构建了一个双语基准——Owl-Bench。Owl-Bench由两个不同的部分组成:317 个条目组成的问答部分和 1000 个问题组成的多选部分,涵盖了该领域的众多真实业务场景,确保Owl-Bench能够展现出多样性。测评集的收集过程包括信息安全、应用、系统架构、软件架构、中间件、网络、操作系统、基础设施和数据库9个不同的子领域。

图2: 根据词频生成的词云

实验结果

Owl-Bench实验结果

Owl-bench的实验结果包括问答题和选择题的结果,实验结果都证明了Owl相关能力的领先性。

图3: 问答题pairwise的结果, 以GPT4作为评测

图4: 选择题zero-shot得分雷达图

运维领域下游任务

为了验证Owl在运维领域的泛化性,在运维相关下游任务进行了测试,选取了日志解析、日志异常检测两个典型任务进行了测试。对于这两个典型任务,设计了特定的prompt,相关实验证实了Owl的有效性。

图5: 日志解析基准测试结果

图6: 日志异常检测基准测试结果

结语

智能运维专属大模型“Owl”的问世将会成为智能运维行业发展的一个新转折点。随着各类新兴技术的应用,云智慧也将会为智能运维领域带来更多的突破和创新,进一步为各类企业提供创新的运维解决方案,提升企业的IT运维效能,促进数字化转型的成功实施。与此同时,“Owl”相关微调和benchmark数据的开源,将为智能运维领域的全生态开放发展贡献更多的研究和应用潜力。

论文链接:https://arxiv.org/abs/2309.09298 Owl : A Large Language Model for IT Operations(猫头鹰:用于 IT 运维的大型语言模型) 友情链接: https://mp.weixin.qq.com/s/LVFp8iYFCg0FouTUWVtFIw

这篇关于云智慧联合北航提出智能运维(AIOps)大语言模型及评测基准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353695

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

《纳瓦尔宝典》是纳瓦尔·拉维坎特(Naval Ravikant)的智慧箴言

《纳瓦尔宝典》是一本由埃里克·乔根森(Erik Jorgensen)编著的书籍,该书于2022年5月10日由中信出版社出版。这本书的核心内容围绕硅谷知名天使投资人纳瓦尔·拉维坎特(Naval Ravikant)的智慧箴言,特别是关于财富积累和幸福人生的原则与方法。 晓北斗推荐 《纳瓦尔宝典》 基本信息 书名:《纳瓦尔宝典》作者:[美] 埃里克·乔根森译者:赵灿出版时间:2022

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费