本文主要是介绍使用SQL语言查询多个Excel表格的操作方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和...
如何用SQL语言查询多个Excel表格
没错,之前我也不知道SQL语言除了可以查询(本文只讨论查询语句)数据库,还可以查询Excel,或者说经过一定处理后,可以像查询数据库一样查询Excel。
下面给出一个场景,假如你有几个(个数未知)Excel表格,你想在这些表格上实现SQL多表查询,该怎么办?
像这样:
学号 | 姓名 |
1054 | 小姜 |
1055 | 小王 |
1061 | 小李 |
1081 | 王哥 |
课程名称 | 任课老师 |
人工智能 | 王老师 |
数据库 | 李老师 |
运筹学 | 张老师 |
概率论 | 郝老师 |
学号 | 课程名称 | 分数 |
1054 | 人工智能 | 90 |
1055 | 数据库 | 91 |
1061 | 运筹学 | 92 |
1081 | 概率论 | 91 |
1054 | 运筹学 | 89 |
1055 | 概率论 | 91 |
1061 | 人工智能 | 95 |
1081 | 数据库 | 94 |
大致思路如下:
- 将所有要导入的Excel表放入一个.xlsx文件中,将各Sheet命名为表名,类似数据库的table名;
- 利用pandas库读取.xlsx文件并创建为一个ExcelFile类;
- 利用类中名为sheet_names的property获取其所有该文件所有的Sheet名;
- 用locals和read_excel函数创建名为各sheet名,值为各sheet内容的局部变量;
- 利用pandasql库中的sqldf来查询一个或多个dataframe,sqldf函数默认查询所有局部变量中的dataframe。
利用pandasql库中的sqldf来查询一个或多个dataframe,sqldf函数默认查询所有局部变量中的dataframe。
代码如下:
import pandas as pd from pandasql import sqldf def dealwith_excel(excel_file,sql_query): xls = pd.ExcelFile(excel_file) sheet_names = xls.sheet_names #list type # print(sheet_names) for sheet_name in sheet_names: locals()[sheet_name] = pd.read_excel(excel_file, sheet_name=sheet_name) df_result = sqldf(sql_query) return df_result
最后返回的就是查询结果!
扩展:
如何使用sql查询excel内容
1. 简介
我们在前面的文章中提到了calcite支持csv和json文件的数据源适配, 其实就是将文件解析成表然后以文件夹为schema, 然后将生成的schema注册到RootSehema(RootSchema是所有数据源schema的parent,多个不同数据源schema可以挂在同一个RootSchema下)
下, 最终使用calcite的特性进行sql的解析查询返回.
但其实我们的数据文件一般使用excel进行存储,流转, 但很可惜, calcite本身没有excel的适配器, 但其实我们可以模仿calcite-file
, 自己搞一个calcite-file-excel
, 也可以熟悉calcite的工作原理.
2. 实现思路
因为excel有sheet的概念, 所以可以将一个excel解析成schema, 每个sheet解析成table, 实现步骤如下:
- 实现
SchemaFactory
重写create方法: schema工厂 用于创建schema - 继承
AbstractSchema
: schema描述类 用于解析excel, 创建table(解析sheet) - 继承
AbstractTable, ScannableTable
: table描述类 提供字段信息和数据内容等(解析sheet data)
3. Excel样例
excel有两个sheet页, 分别是user_info
和 role_info
如下:
ok, 万事具备.
4. Maven
<dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooXML</artifactId> <version>5.2.3</version> </dependency> <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</artifactId> <version>5.2.3</version> </dependency> <dependency> <groupId>org.apache.calcite</groupId> <artifactId>calcite-core</artifactId> <version>1.37.0</version> </dependency>
5. 核心代码
5.1 SchemaFactory
package com.ldx.calcite.excel; import com.google.common.collect.Lists; import org.apache.calcite.schema.Schema; import org.apache.calcite.schema.SchemaFactory; import org.apache.calcite.schema.SchemaPlus; import org.apache.commons.lang3.ObjectUtils; import org.apache.commons.lang3.StringUtils; import Java.io.File; import java.util.List; import java.util.Map; /** * schema factory */ public class ExcelSchemaFactory implements SchemaFactory { public final static ExcelSchemaFactory INSTANCE = new ExcelSchemaFactory(); private ExcelSchemaFactory(){} @Override public Schema create(SchemaPlus parentSchema, String name, Map<String, Object> operand) { final Object filePath = operand.get("filePath"); if (ObjectUtils.isEmpty(filePath)) { throw new NullPointerException("can not find excel file"); } return this.create(filePath.toString()); } public Schema create(String excelFilePath) { if (StringUtils.isBlank(excelFilePath)) { throw new NullPointerException("can not find excel file"); } return this.create(new File(excelFilePath)); } public Schema create(File excelFile) { if (ObjectUtils.isEmpty(excelFile) || !excelFile.exists()) { throw new NullPointerException("can not find excel file"); } if (!excelFile.isFile() || !isExcelFile(excelFile)) { throw new RuntimeException("can not find excel file: " + excelFile.getAbsolutePath()); } return new ExcelSchema(excelFile); } protected List<String> supportedFileSuffix() { return Lists.newArrayList("xls", "xlsx"); } private boolean isExcelFile(File excelFile) { if (ObjectUtils.isEmpty(excelFile)) { return false; } final String name = excelFile.getName(); return StringUtils.endsWithAny(name, this.supportedFileSuffix().toArray(new String[0])); } }
schema中有多个重载的create方法用于方便的创建schema, 最终将excel file 交给ExcelSchema
创建一个schema对象
5.2 Schema
package com.ldx.calcite.excel; import org.apache.calcite.schema.Table; import org.apache.calcite.schema.impl.AbstractSchema; import org.apache.commons.lang3.ObjectUtils; import org.apache.poi.ss.usermodel.Sheet; import org.apache.poi.ss.usermodel.Workbook; import org.apache.poi.ss.usermodel.WorkbookFactory; import org.testng.collections.Maps; import java.io.File; import java.util.Iterator; import java.util.Map; /** * schema */ public class ExcelSchema extends AbstractSchema { private final File excelFile; private Map<String, Table> tableMap; public ExcelSchema(File excelFile) { this.excelFile = excelFile; } @Override protected Map<String, Table> getTableMap() { if (ObjectUtils.isEmpty(tableMap)) { tableMap = createTableMap(); } return tableMap; } private Map<String, Table> createTableMap() { final Map<String, Table> result = Maps.newHashMap(); try (Workbook workbook = WorkbookFactory.create(excelFile)) { final Iterator<Sheet> sheetIterator = workbook.sheetIterator(); while (sheetIterator.hasNext()) { final Sheet sheet = sheetIterator.next(); final ExcelScannableTable excelScannableTable = new ExcelScannableTable(sheet, null); result.put(sheet.getSheetName(), excelScannableTable); } } catch (Exception ignored) {} return result; } }
schema类读取Excel file, 并循环读取sheet, 将每个sheet解析成ExcelScannableTable
并存储
5.3 Table
package com.ldx.calcite.excel; import com.google.common.collect.Lists; import com.ldx.calcite.excel.enums.JavaFileTypeEnum; import org.apache.calcite.DataContext; import org.apache.calcite.adapter.java.JavaTypeFactory; import org.apache.calcite.linq4j.Enumerable; import org.apache.calcite.linq4j.Linq4j; import org.apache.calcite.rel.type.RelDataType; import org.apache.calcite.rel.type.RelDataTypeFactory; import org.apache.calcite.rel.type.RelProtoDataType; import org.apache.calcite.schema.ScannableTable; import org.apache.calcite.schema.impl.AbstractTable; import org.apache.calcite.sql.type.SqlTypeName; import org.apache.calcite.util.Pair; import org.apache.commons.lang3.ObjectUtils; import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.Row; import org.apache.poi.ss.usermodel.Sheet; import org.checkerframework.checker.nullness.qual.Nullable; import java.util.List; /** * table */ public class ExcelScannableTable extends AbstractTable implements ScannableTable { private final RelProtoDataType protoRowType; private final Sheet sheet; private RelDataType rowType; private List<JavaFileTypeEnum> fieldTypes; private List<Object[]> rowDataList; public ExcelScannableTable(Sheet sheet, RelProtoDataType protoRowType) { this.protoRowType = protoRowType; this.sheet = sheet; } @Override public Enumerable<@Nullable Object[]> scan(DataContext root) { JavaTypeFactory typeFactory = root.getTypeFactory(); final List<JavaFileTypeEnum> fieldTypes = this.getFieldTypes(typeFactory); if (rowDataList == null) { rowDataList = readExcelData(sheet, fieldTypes); } return Linq4j.asEnumerable(rowDataList); } @Override public RelDataType getRowType(RelDataTypeFactory typeFactory) { if (ObjectUtils.isNotEmpty(protoRowType)) { return protoRowType.apply(typeFactory); } if (ObjectUtils.isEmpty(rowType)) { rowType = deduceRowType((JavaTypeFactory) typeFactory, sheet, null); } return rowType; } public List<JavaFileTypeEnum> getFieldTypes(RelDataTypeFactory typeFactory) { if (fieldTypes == null) { fieldTypes = Lists.newArrayList(); deduceRowType((JavaTypeFactory) typeFactory, sheet, fieldTypes); } return fieldTypes; } private List<Object[]> readExcelData(Sheet sheet, List<JavaFileTypeEnum> fieldTypes) { List<Object[]> rowDataList = Lists.newArrayList(); for (int rowIndex = 1; rowIndex <= sheet.getLastRowNum(); rowIndex++) { Row row = sheet.getRow(rowIndex); Object[] rowData = new Object[fieldTypes.size()]; for (int i = 0; i < row.getLastCellNum(); i++) { final JavaFileTypeEnum javaFileTypeEnum = fieldTypes.get(i); Cell cell = row.getCell(i, Row.MissingCellPolicy.CREATE_NULL_AS_BLANK); final Object cellValue = javaFileTypeEnum.getCellValue(cell); rowData[i] = cellValue; } rowDataList.add(rowData); } return rowDataList; } public static RelDataType deduceRowType(JavaTypeFactory typeFactory, Sheet sheet, List<JavaFileTypeEnum> fieldTypes) { final List<String> names = Lists.newArrayList(); final List<RelDataType> types = Lists.newArrayList(); if (sheet != null) { Row headerRow = sheet.getRow(0); if (headerRow != null) { for (int i = 0; i < headerRow.getLastCellNum(); i++) { Cell cell = headerRow.getCell(i, Row.MissingCellPolicy.CREATE_NULL_AS_BLANK); String[] columnInfo = cell .getStringCellValue() .split(":"); String columnName = columnInfo[0].trim(); String columnType = null; if (columnInfo.length == 2) { columnType = columnInfo[1].trim(); } final JavaFileTypeEnum javaFileType = JavaFileTypeEnum .of(columnType) .orElse(JavaFileTypeEnum.UNKNOWN); final RelDataType sqlType = typeFactory.createSqlType(javaFileType.getSqlTypeName()); names.add(columnName); types.a编程dd(sqlType); if (fieldTypes != null) { fieldTypes.add(javaFileType); } } } } if (names.isEmpty()) { names.add("line"); types.add(typeFactory.createSqlType(SqlTypeName.VARCHAR)); } return typeFactory.createStructType(Pair.zip(names, types)); } }
table类中其中有两个比较关键的方法
scan
: 扫描表内容, 我们这里将sheet页面的数据内容解析存储最后交给calcite
getRowType
: 获取字段信息, 我们这里默认使用第一条记录作为表头(row[0]) 并解析为字段信息, 字段规则跟csv一样 name:string
, 冒号前面的是字段key, 冒号后面的是字段类型, 如果未指定字段类型, 则解析为UNKNOWN
, 后续JavaFileTypeEnum
会进行类型推断, 最终在结果处理时calcite也会进行推断
deduceRowType
: 推断字段类型, 方法中使用JavaFileTypeEnum
枚举类对java type & sql type & 字段值转化处理方法 进行管理
5.4 ColumnTypeEnum
package com.ldx.calcite.excel.enums; import lombok.Getter; import lombok.extern.slf4j.Slf4j; import org.apache.calcite.avatica.util.DateTimeUtils; import org.apache.calcite.sql.type.SqlTypeName; import org.apache.commons.lang3.ObjectUtils; import org.apache.commons.lang3.StringUtils; import org.apache.commons.lang3.time.FastDateFormat; import org.apache.poi.ss.usermodel.Cell; import org.apache.poi.ss.usermodel.DateUtil; import org.apache.poi.ss.util.CellUtil; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.Date; import java.util.Optional; import java.util.TimeZone; import java.util.function.Function; /** * type converter */ @Slf4j @Getter public enum JavaFileTypeEnum { STRING("string", SqlTypeName.VARCHAR, Cell::getStringCellValue), BOOLEAN("boolean", SqlTypeName.BOOLEAN, Cell::getBooleanCellValue), BYTE("byte", SqlTypeName.TINYINT, Cell::getStringCellValue), CHAR("char", SqlTypeName.CHAR, Cell::getStringCellValue), SHORT("short", SqlTypeName.SMALLINT, Cell::getNumericCellValue), INT("int", SqlTypeName.INTEGER, cell -> (Double.valueOf(cell.getNumericCellValue()).intValue())), LONG("long", SqlTypeName.BIGINT, cell -> (Double.valueOf(cell.getNumericCellValue()).longValue())), FLOAT("float", SqlTypeName.REAL, Cell::getNumericCellValue), DOUBLE("double", SqlTypeName.DOUBLE, Cell::getNumericCellValue), DATE("date", SqlTypeName.DATE, getValueWithDate()), TIMESTAMP("timestamp", SqlTypeName.TIMESTAMP, getValueWithTimestamp()), TIME("time", SqlTypeName.TIME, getValueWithTime()), UNKNOWN("unknown", SqlTypeName.UNKNOWN, getValueWithUnknown()),; // cell type private final String typeName; // sql type private final SqlTypeName sqlTypeName; // value convert func private final Function<Cell, Object> cellValueFunc; private static final FastDateFormat TIME_FORMAT_DATE; private static final FastDateFormat TIME_FORMAT_TIME; private static final FastDateFormat TIME_FORMAT_TIMESTAMP; static { final TimeZone gmt = TimeZone.getTimeZone("GMT"); TIME_FORMAT_DATE = FastDateFormat.getInstance("yyyy-MM-dd", gmt); TIME_FORMAT_TIME = FastDateFormat.getInstance("HH:mm:ss", gmt); TIME_FORMAT_TIMESTAMP = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss", gmt); } JavaFileTypeEnum(String typeName, SqlTypeName sqlTypeName, Function<Cell, Object> cellValueFunc) { this.typeName = typeName; this.sqlTypeName = sqlTypeName; this.cellValueFunc = cellValueFunc; } public static Optional<JavaFileTypeEnum> of(String typeName) { return Arrays .stream(values()) .filter(type -> StringUtils.equalsIgnoreCase(typeName, type.getTypeName())) .findFirst(); } public static SqlTypeName findSqlTypeName(String typeName) { final Optional<JavaFileTypeEnum> javaFileTypeOptional = of(typeName); if (javaFileTypeOptional.isPresent()) { return javaFileTypeOptional .get() .getSqlTypeName(); } return SqlTypeName.UNKNOWN; } public Object getCellValue(Cell cell) { return cellValueFunc.apply(cell); } public static Function<Cell, Object> getValueWithUnknown() { return cell -> { if (ObjectUtils.isEmpty(cell)) { return null; } switch (cell.getCellType()) { case STRING: return cell.getStringCellValue(); case NUMERIC: if (DateUtil.isCellDateFormatted(cell)) { // 如果是日期类型,返回日期对象 return cell.getDateCellValue(); } else { // 否则返回数值 return cell.getNumericCellValue(); } case BOOLEAN: return cell.getBooleanCellValue(); case FORMULA: // 对于公式单元格,先计算公式结果,再获取其值 try { China编程 return cell.getNumericCellValue(); } catch (Exception e) { js try { return cell.getStringCellValue(); } catch (Exception ex) { log.error("parse unknown data error, cellRowIndex:{}, cellColumnIndex:{}", cell.getRowIndex(), cell.getColumnIndex(), e); return null; } } case BLANK: return ""; default: return null; } }; } public static Function<Cell, Object> getValueWithDate() { return cell -> { Date date = cell.getDateCellValue(); if(ObjectUtils.isEmpty(date)) { return null; } try { final String formated = new SimpleDateFormat("yyyy-MM-dd").format(date); Date newDate = TIME_FORMAT_DATE.parse(formated); return (int) (newDate.getTime() / DateTimeUtils.MILLIS_PER_DAY); } catch (ParseException e) { log.error("parse date error, date:{}", date, e); } return null; }; } public static Function<Cell, Object> getValueWithTimestamp() { return cell -> { Date date = cell.getDateCellValue(); if(ObjectUtils.isEmpty(date)) { return null; } try { final String formated = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(date); Date newDate = TIME_FORMAT_TIMESTAMP.parse(formated); return (int) newDate.getTime(); } catch (ParseException e) { log.error("parse timestamp error, date:{}", date, e); } return null; }; } public static Function<Cell, Object> getValueWithTime() { return cell -> { Date date = cell.getDateCellValue(); if(ObjectUtils.isEmpty(date)) { return null; } try { final String formated = new SimpleDateFormat("HH:mm:ss").format(date); Date newDate = TIME_FORMAT_TIME.parse(formated); return newDate.getTime(); } catch (ParseException e) { log.error("parse time error, date:{}", date, e); } return null; }; } }
该枚举类主要管理了java type
& sql type
& cell value convert func
, 方便统一管理类型映射及单元格内容提取时的转换方法(这里借用了java8 function函数特性)
注: 这里的日期转换只能这样写, 即使用GMT的时区(抄的
calcite-file
), 要不然输出的日期时间一直有时差...
6. 测试查询
package com.ldx.calcite; import com.ldx.calcite.excel.ExcelSchemaFactory; import lombok.SneakyThrows; import lombok.extern.slf4j.Slf4j; import org.apache.calcite.config.CalciteConnectionProperty; import org.apache.calcite.jdbc.CalciteConnection; import org.apache.calcite.schema.Schema; import org.apache.calcite.schema.SchemaPlus; import org.apache.calcite.util.Sources; import org.junit.jupiter.api.AfterAll; import org.junit.jupiter.api.BeforeAll; import org.junit.jupiter.api.Test; import org.testng.collections.Maps; import java.net.URL; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.ResultSetMetaData; import java.sql.SQLException; import java.sql.Statement; import java.util.Map; import java.util.Properties; @Slf4j public class CalciteExcelTest { private static Connection connection; private static SchemaPlus rootSchema; private static CalciteConnection calciteConnection; @BeforeAll @SneakyThrows public static void beforeAll() { Properties info = new Properties(); // 不区分sql大小写 info.setProperty(CalciteConnectionProperty.CASE_SENSITIVE.camelName(), "false"); // 创建Calcite连接 connection = DriverManager.getConnection("jdbc:calcite:", info); calciteConnection = connection.unwrap(CalciteConnection.class); // 构建RootSchema,在Calcite中,RootSchema是所有数据源schema的parent,多个不同数据源schema可以挂在同一个RootSchema下 rootSchema = calciteConnection.getRootSchema(); } @Test @SneakyThrows public void test_execute_query() { final Schema schema = ExcelSchemaFactory.INSTANCE.create(resourcePath("file/test.xlsx")); rootSchema.add("test", schema); // 设置默认的schema calciteConnection.setSchema("test"); final StatemenChina编程t statement = calciteConnection.createStatement(); ResultSet resultSet = statement.executeQuery("SELECT * FROM user_info"); printResultSet(resultSet); System.out.println("========="); ResultSet resultSet2 = statement.executeQuery("SELECT * FROM test.user_info where id > 110 and birthday > '2003-01-01'"); printResultSet(resultSet2); System.out.println("========="); ResultSet resultSet3 = statement.executeQuery("SELECT * FROM test.user_info ui inner join test.role_info ri on ui.role_id = ri.id"); printResultSet(resultSet3); } @AfterAll @SneakyThrows public static void closeResource() { connection.close(); } private static String resourcePath(String path) { final URL url = CalciteExcelTest.class.getResource("/" + path); return Sources.of(url).file().getAbsolutePath(); } public static void printResultSet(ResultSet resultSet) throws SQLException { // 获取 ResultSet 元数据 ResultSetMetaData metaData = resultSet.getMetaData(); // 获取列数 int columnCount = metaData.getColumnCount(); log.info("Number of columns: {}",columnCount); // 遍历 ResultSet 并打印结果 while (resultSet.next()) { final Map<String, String> item = Maps.newHashMap(); // 遍历每一列并打印 for (int i = 1; i <= columnCount; i++) { String columnName = metaData.getColumnName(i); String columnValue = resultSet.getString(i); item.put(columnName, columnVa编程China编程lue); } log.info(item.toString()); } } }
测试结果如下:
到此这篇关于使用SQL语言查询多个Excel表格的操作方法的文章就介绍到这了,更多相关SQL查询多个Excel表格内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!
这篇关于使用SQL语言查询多个Excel表格的操作方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!