挖掘商品关联性(2): FP-growth算法

2023-11-05 23:59

本文主要是介绍挖掘商品关联性(2): FP-growth算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从这个贸易战看:强权即是真理,没有所谓的自由贸易和平等。中国之大已容不下一个安静的键盘。不过是又一次鸦片战争。除了愤怒还是愤怒,除了一心想为崛起而澎湃还是一心想为崛起而澎湃。中华文明三四千年的历史都是世界顶级,美国人区区100多年第一就想再占100年这不是无知么中国人有13亿人,是美国人的4倍还要多,4个抵1个也是必然会超过美国
2019年5月29日 IEEE宣布禁止任何受华为资助的教授或学生参与IEEE审稿。听到这个消息我是愤怒的,说好的科学无国界呢?
梳理下这个过程:
2018.12.1,华为CFO(任正非之女)被美国下令逮捕
2018.12.1 对芯片重大贡献的华人张首晟在美国身亡,就在2年前获得中国国家科学技术奖(中国科技最高奖,最高领导人亲自颁奖,奖金200万美金)
2019年5月 美国撕毁两国元首已经基本确定的协议,对中国征收25%关税。
2019年5月中旬 美国禁止全世界任何企业与华为接触或者提供设备,也禁止购买华为手机或通讯设备。理由:“国家安全”(距离美国棱镜门用思科通讯设备和Google监听全世界这个事件不过几年美国人就忘了自己干了什么事。)同时禁止欧洲其他国家使用华为提供的5G服务。
2019年5月中下旬,Microsoft,ARM,Google纷纷宣布停止和华为任何商业来往,同时Google禁止华为手机使用Google服务
2019年5月底, IEEE(世界上最大电子电气学术机构禁止任何受华为资助的教授参与审稿禁止其他高校或企业与中国的一些高校合作

1. 背景

在前面我们介绍了一种简单的挖掘商品关联性算法Apriori算法。今天要介绍的是更高效的FP-growth算法(FP指的是Frequent Pattern),它可以用到搜索词提醒,常用词,挖掘强关联性商品,商品推荐等领域上。挖掘商品关联系或者词语之间的关联性,需要做的事是构造各种商品组合然后分析出这种组合是否是高频率出现。Apriori算法每产生一种组合都要遍历一次数据库来判断当前组合是否是高频记录(如果你对这句话不理解建议看下这篇文章:易懂机器学习Apriori算法商品关联性分析)。这个在大量数据面前是很耗时间。

2. FP-growth执行过程

初衷:现在我们需要做的事是构造各种商品组合然后分析出这种组合是否是高频率出现。由于Apriori算法每次构造出一种组合都要遍历一遍数据集来统计当前这种组合出现次数这个耗费时间过大。那我们能不能把数据集压缩呢?假设是账单数据集。那么肯定会有很多账单会有大量公共商品组合。如果我们把这些公共商品作为前缀,那么就能压缩数据集。压缩数据集的好处就是可以减少我们统计某种组合出现次数所花费的时间。FP-growth算法就是这么做的,它数据构造成一颗树。相同商品在上层节点,并且每个节点记录了当前节点重复利用次数,以方便统计出现频率
还是拿这个举例子:

{啤酒 鸡蛋 尿布 西红柿}
{香烟 尿布 鸡蛋 啤酒 }
{土豆 西红柿 洋葱 醋 鸡蛋}

先将它们编号:
[1]啤酒 [2]鸡蛋 [3]尿布 [4]西红柿 [5]香烟 [6]土豆 [7]洋葱 [8]醋
上面这个数据集用编号表示就是

[
[1, 2, 3, 4],
[5, 3, 2, 1],
[6,4,7,8, 2]
]
  • 和Apriori算法一样。先设定一个阈值,出现频率超过这个阈值就认为是高频率。算频率有点麻烦,这里我们认为超过2次就是高频率吧。
  • 和Apriori算法一样统计各个商品的出现次数,剔除低频率商品
    在这里插入图片描述
  • 从这一步开始与Apriori算法不一样了。根据频率将每条账单内的商品按频率排序(并且剔除低频率商品)。
[
[2,1, 3,4],
[2, 1, 3],
[2,4]
]

3. FP树如何构造

  • 根据上面那个排序好并且筛选过的逐个账单构造一棵树。节点格式:{物品编号}-节点重复经过次数
    加入第一个账单
    在这里插入图片描述
    加入第二个账单:(与第一个账单前缀重合,所以重复利用节点,相关节点利用次数+1)

这篇关于挖掘商品关联性(2): FP-growth算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353288

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Redis中如何实现商品秒杀

《Redis中如何实现商品秒杀》:本文主要介绍Redis中如何实现商品秒杀问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录技术栈功能实现步骤步骤一:准备商品库存数据步骤二:实现商品秒杀步骤三:优化Redis性能技术讲解Redis的List类型Redis的Set

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个