全网超细,Pytest自动化测试框架入门到精通-实战整理,一篇打通...

本文主要是介绍全网超细,Pytest自动化测试框架入门到精通-实战整理,一篇打通...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录:导读

    • 前言
    • 一、Python编程入门到精通
    • 二、接口自动化项目实战
    • 三、Web自动化项目实战
    • 四、App自动化项目实战
    • 五、一线大厂简历
    • 六、测试开发DevOps体系
    • 七、常用自动化测试工具
    • 八、JMeter性能测试
    • 九、总结(尾部小惊喜)


前言

1、Pytest和Unittest的区别?

如何区分这两者,很简单unittest作为官方的测试框架,在测试方面更加基础,并且可以再次基础上进行二次开发,同时在用法上格式会更加复杂;

而pytest框架作为第三方框架,方便的地方就在于使用更加灵活,并且能够对原有unittest风格的测试用例有很好的兼容性,同时在扩展上更加丰富,可通过扩展的插件增加使用的场景,比如一些并发测试等;

2、Pytest 安装

pip安装:

pip install pytest

测试安装成功:

pytest --helppy.test --help

检查安装版本:

pytest --version

3、Pytest 示例

Pytest编写规则:

测试文件以test_开头(以_test为结尾)
测试的类以Test开头;
测试的方法以test_开头
断言使用基本的assert

test_example.py

def count_num(a: list) -> int:return len(a)def test_count():assert count_num([1, 2, 3]) != 3

执行测试:

pytest test_example.py

执行结果:

C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest>pytest test_example.py -v
================================================================= test session starts =================================================================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- d:\coding\python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collected 1 item                                                                                                                                       test_example.py::test_count FAILED                                                                                                               [100%]====================================================================== FAILURES =======================================================================
_____________________________________________________________________ test_count ______________________________________________________________________def test_count():
>       assert count_num([1, 2, 3]) != 3
E       assert 3 != 3
E        +  where 3 = count_num([1, 2, 3])test_example.py:11: AssertionError
=============================================================== short test summary info ===============================================================
FAILED test_example.py::test_count - assert 3 != 3
================================================================== 1 failed in 0.16s ==================================================================

备注:

.代表测试通过,F代表测试失败;
-v显示详细的测试信息, -h显示pytest命令详细的帮助信息;

4、标记

默认情况下,pytest会在当前目录下寻找以test_为开头(以_test结尾)的测试文件,并且执行文件内所有以test_为开头(以_test为结尾)的所有函数和方法;

1)指定运行测试用例,可以通过::显示标记(文件名::类名::方法名)(文件名::函数名)

pytest test_example3.py::test_odd

2)指定一些测试用例测试运行,可以使用-k模糊匹配

pytest -k example

3)通过pytest.mark.skip()或者pytest.makr.skipif()条件表达式,跳过指定的测试用例

import pytesttest_flag = False@pytest.mark.skip()
def test_odd():num = random.randint(0, 100)assert num % 2 == 1@pytest.mark.skipif(test_flag is False, reason="test_flag is False")
def test_even():num = random.randint(0, 1000)assert num % 2 == 0

4)通过pytest.raises()捕获测试用例可能抛出的异常

def test_zero():num = 0with pytest.raises(ZeroDivisionError) as e:num = 1/0exc_msg = e.value.args[0]print(exc_msg)assert num == 0

5)预先知道测试用例会失败,但是不想跳过,需要显示提示信息,使用pytest.mark.xfail()

@pytest.mark.xfail()
def test_sum():random_list = [random.randint(0, 100)  for x in range(10)]num = sum(random_list)assert num < 20

6)对测试用例进行多组数据测试,每组参数都能够独立执行一次(可以避免测试用例内部执行单组数据测试不通过后停止测试)

@pytest.mark.parametrize('num,num2', [(1,2),(3,4)])
def test_many_odd(num: int, num2: int):assert num % 2 == 1assert num2 % 2 == 0

5、固件(Fixture)

固件就是一些预处理的函数,pytest会在执行测试函数前(或者执行后)加载运行这些固件,常见的应用场景就有数据库的连接和关闭(设备连接和关闭)

简单使用

import pytest@pytest.fixture()
def postcode():return "hello"def test_count(postcode):assert postcode == "hello"

按照官方的解释就是当运行测试函数,会首先检测运行函数的参数,搜索与参数同名的fixture,一旦pytest找到,就会运行这些固件,获取这些固件的返回值(如果有),并将这些返回值作为参数传递给测试函数;

1)预处理和后处理

接下来进一步验证关于官方的说法:

import pytest@pytest.fixture()
def connect_db():print("Connect Database in .......")yieldprint("Close Database out .......")def read_database(key: str):p_info = {"name": "zhangsan","address": "China Guangzhou","age": 99}return p_info[key]def test_count(connect_db):assert read_database("name") == "zhangsan"

执行测试函数结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 1 itemtest_example.py::test_count Connect Database in .......
PASSED                                       [100%]Close Database out .......============================== 1 passed in 0.07s ==============================

备注:
首先从结果上看验证了官方的解释,pytest执行测试函数前会寻找同名的固件加载运行;

connect_db固件中有yield,这里pytest默认会判断yield关键词之前的代码属于预处理,会在测试前执行,yield之后的代码则是属于后处理,将在测试后执行;

2)作用域

从前面大致了解了固件的作用,抽离出一些重复的工作方便复用,同时pytest框架中为了更加精细化控制固件。

会使用作用域来进行指定固件的使用范围,(比如在这一模块中的测试函数执行一次即可,不需要模块中的函数重复执行)更加具体的例子就是数据库的连接,这一连接的操作可能是耗时的,我只需要在这一模块的测试函数运行一次即可,不需要每次都运行。

而定义固件是,一般通过scop参数来声明作用,常用的有:

function: 函数级,每个测试函数都会执行一次固件;
class: 类级别,每个测试类执行一次,所有方法都可以使用;
module: 模块级,每个模块执行一次,模块内函数和方法都可使用;
session: 会话级,一次测试只执行一次,所有被找到的函数和方法都可用。

import pytest@pytest.fixture(scope="function")
def func_scope():print("func_scope")@pytest.fixture(scope="module")
def mod_scope():print("mod_scope")@pytest.fixture(scope="session")
def sess_scope():print("session_scope")def test_scope(sess_scope, mod_scope, func_scope):passdef test_scope2(sess_scope, mod_scope, func_scope):pass

执行结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 2 itemstest_example2.py::test_scope session_scope
mod_scope
func_scope
PASSED                                      [ 50%]
test_example2.py::test_scope2 func_scope
PASSED                                     [100%]============================== 2 passed in 0.07s ==============================

从这里可以看出module,session作用域的固件只执行了一次,可以验证官方的使用介绍

3)自动执行

有人可能会说,这样子怎么那么麻烦,unittest框架中直接定义setUp就能自动执行预处理,同样的pytest框架也有类似的自动执行; pytest框架中固件一般通过参数autouse控制自动运行。

import pytest@pytest.fixture(scope='session', autouse=True)
def connect_db():print("Connect Database in .......")yieldprint("Close Database out .......")def test1():print("test1")def test2():print("test")

执行结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 2 itemstest_example.py::test1 Connect Database in .......
PASSED                                            [ 50%]test1test_example.py::test2 PASSED                                            [100%]test
Close Database out .......============================== 2 passed in 0.07s ==============================

从结果看到,测试函数运行前后自动执行了connect_db固件;

4)参数化

前面简单的提到过了@pytest.mark.parametrize通过参数化测试,而关于固件传入参数时则需要通过pytest框架中内置的固件request,并且通过request.param获取参数

import pytest@pytest.fixture(params=[('redis', '6379'),('elasticsearch', '9200')
])
def param(request):return request.param@pytest.fixture(autouse=True)
def db(param):print('\nSucceed to connect %s:%s' % param)yieldprint('\nSucceed to close %s:%s' % param)def test_api():assert 1 == 1

执行结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 2 itemstest_example.py::test_api[param0] 
Succeed to connect redis:6379
PASSED                                 [ 50%]
Succeed to close redis:6379test_example.py::test_api[param1] 
Succeed to connect elasticsearch:9200
PASSED                                 [100%]
Succeed to close elasticsearch:9200============================== 2 passed in 0.07s ==============================

这里模拟连接redis和elasticsearch,加载固件自动执行连接然后执行测试函数再断开连接。

下面是我整理的2023年最全的软件测试工程师学习知识架构体系图

一、Python编程入门到精通

请添加图片描述

二、接口自动化项目实战

请添加图片描述

三、Web自动化项目实战

请添加图片描述

四、App自动化项目实战

请添加图片描述

五、一线大厂简历

请添加图片描述

六、测试开发DevOps体系

请添加图片描述

七、常用自动化测试工具

请添加图片描述

八、JMeter性能测试

请添加图片描述

九、总结(尾部小惊喜)

不要害怕失败,因为只有在不断经历失败的过程中,才能真正地成长和变得更加强大。坚持追求自己的梦想,终将赢得成功与荣耀。

在追逐梦想的路上,不要惧怕困难与挑战,相信自己的能力,坚持不懈地努力奋斗,你将会超越自我,创造属于自己的不朽传奇。

无论遭遇多少风雨,都要坚持自己的梦想,在困境中寻找勇气和力量,相信自己的能力,努力奋斗,终将走向成功的彼岸。

这篇关于全网超细,Pytest自动化测试框架入门到精通-实战整理,一篇打通...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/351338

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Windows自动化Python pyautogui RPA操作实现

《Windows自动化PythonpyautoguiRPA操作实现》本文详细介绍了使用Python的pyautogui库进行Windows自动化操作的实现方法,文中通过示例代码介绍的非常详细,对大... 目录依赖包睡眠:鼠标事件:杀死进程:获取所有窗口的名称:显示窗口:根据图片找元素:输入文字:打开应用:依

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Jenkins中自动化部署Spring Boot项目的全过程

《Jenkins中自动化部署SpringBoot项目的全过程》:本文主要介绍如何使用Jenkins从Git仓库拉取SpringBoot项目并进行自动化部署,通过配置Jenkins任务,实现项目的... 目录准备工作启动 Jenkins配置 Jenkins创建及配置任务源码管理构建触发器构建构建后操作构建任务

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核