C1-1: Consumer Theory-Primitive Notions, Preference Relations and categories.

本文主要是介绍C1-1: Consumer Theory-Primitive Notions, Preference Relations and categories.,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Chapter1-Consumer Theory

Primitive Notions

4 building blocks in any model of consumer choice

  • consumption set, X : \mathbf{X}: X: SET, all alternatives or complete consumption plans.

    • X ⊆ R + n \mathbf{X}\subseteq \mathbb{R}_+^n XR+n, that is to say, set X \mathbf{X} X is a subset of the non-negative n-dimension set R \mathbb{R} R.

    在这里插入图片描述

    • X \mathbf{X} X is closed. A closed set is a set that contains all its limit points. This implies that the complement of the closed set is an open set.

在这里插入图片描述

  • X \mathbf{X} X is convex

    A set X \mathbf{X} X is convex if, for any two points within the set, the line segment connecting them is also contained within the set. Mathematically, this can be represented as:

    For any x , y ∈ X x, y \in \mathbf{X} x,yX and any t ∈ [ 0 , 1 ] , t x + ( 1 − t ) y ∈ X t \in [0, 1], tx + (1 - t)y \in \mathbf{X} t[0,1],tx+(1t)yX.

在这里插入图片描述

  • 0 ∈ X \mathbf{0}\in\mathbf{X} 0X

x = ( x 1 , . . . , x n ) , x i ∈ R , x ∈ X , x ∈ R + n : \mathbf{x}=(x_1,...,x_n),x_i\in \mathbb{R}, \mathbf{x} \in \mathbf{X},\mathbf{x} \in \mathbb{R}_+^n: x=(x1,...,xn),xiR,xX,xR+n: Vector, consumption bundle/plan

  • feasible set, B ∈ X \mathbf{B}\in \mathbf{X} BX

    • subset of the consumption set X \mathbf{X} X
    • satisfy the constraints
      在这里插入图片描述
  • preference relation,

    • represents the subjective ranking of options from the most preferred to the least preferred

    • The preference relation ≻ \succ on a set X \mathbf{X} X is a binary relation that satisfies the following properties:

      Axiom1: Completeness: For any x 1 , x 2 ∈ X \mathbf{x^1}, \mathbf{x^2} \in \mathbf{X} x1,x2X, either x ⪰ y x \succeq y xy or y ⪰ x y \succeq x yx.

      Axiom2: Transitivity: For any x 1 , x 2 , x 3 , ∈ X \mathbf{x^1}, \mathbf{x^2},\mathbf{x^3}, \in \mathbf{X} x1,x2,x3,X, if x 1 ⪰ x 2 \mathbf{x^1} \succeq \mathbf{x^2} x1x2 and x 2 ⪰ x 3 \mathbf{x^2} \succeq \mathbf{x^3} x2x3, then x 1 ⪰ x 3 \mathbf{x^1} \succeq \mathbf{x^3} x1x3.

在这里插入图片描述

  • behavioural assumption

    • the consumer seeks to identify and select an available alternative that is most preferred in the light of his personal tastes.

Preference and Utility

preference relations

  • preference relation ⪰ \succeq :

    A preference relation ⪰ \succeq on a set X \mathbf{X} X is a binary relation that represents the way in which an individual ranks different alternatives or choices.

    • read as: is at least as good as
    • defined on the consumption set, X \mathbf{X} X.
    • If x 1 ⪰ x 2 x^1 \succeq x^2 x1x2, we say that ‘ x 1 x^1 x1 is at least as good as x 2 x^2 x2’, for this specific consumer.
    • It satisfies the following axioms:
      1. Completeness: For any x 1 , x 2 ∈ X \mathbf{x}^1, \mathbf{x}^2 \in \mathbf{X} x1,x2X, either x 1 ⪰ x 2 \mathbf{x}^1 \succeq \mathbf{x}^2 x1x2 or x 2 ⪰ x 1 \mathbf{x}^2 \succeq \mathbf{x}^1 x2x1 or both.
      2. Transitivity: For any x 1 , x 2 , x 3 ∈ X \mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3 \in \mathbf{X} x1,x2,x3X, if x 1 ⪰ x 2 \mathbf{x}^1 \succeq \mathbf{x}^2 x1x2 and x 2 ⪰ x 3 \mathbf{x}^2 \succeq \mathbf{x}^3 x2x3, then x 1 ⪰ x 3 \mathbf{x}^1 \succeq \mathbf{x}^3 x1x3.
  • strict preference relation ≻ \succ

    A strict preference relation indicates that one option is strictly preferred over another, without considering them as equally desirable.

    • read as: is strictly preferred to
    • The relation x 1 ≻ x 2 x^1 \succ x^2 x1x2 holds if and only if x 1 ⪰ x 2 x^1 \succeq x^2 x1x2 and x 2 ⪰̸ x 1 x^2 \not\succeq x^1 x2x1.
    • It satisfies the following axioms:
      1. Irreflexivity: No element is strictly preferred to itself, formally represented as x ⊁ x x \not\succ x xx.
      2. Asymmetry: If x ≻ y x \succ y xy, then y ⊁ x y \not\succ x yx for any elements x x x and y y y.
      3. Transitivity: For any elements x x x, y y y, and z z z, if x ≻ y x \succ y xy and y ≻ z y \succ z yz, then x ≻ z x \succ z xz.
  • indifference relation ∼ \sim

    • read as: is indifferent to

    • The relation x 1 ∼ x 2 x^1 \sim x^2 x1x2 holds if and only if x 1 ⪰ x 2 x^1 \succeq x^2 x1x2 and x 2 ⪰ x 1 x^2 \succeq x^1 x2x1.

  • Conclusion:

    For any pair x 1 x_1 x1 and x 2 x_2 x2, exactly one of the following three mutually exclusive possibilities holds: x 1 ≻ x 2 x^1 \succ x^2 x1x2, or x 2 ≻ x 1 x^2 \succ x^1 x2x1, or x 1 ∼ x 2 x^1 \sim x^2 x1x2.

What we get for the above assumptions:

  • For example:

    For X = R + 2 \mathbf{X}=\mathbb{R}_+^2 X=R+2, Any point in the consumption set, such as x 0 = ( x 1 0 , x 2 0 ) x^0=(x_1^0,x_2^0) x0=(x10,x20), represents a consumption plan consisting of a certain amount x 1 0 x_1^0 x10 of commodity 1, together with a certain amount x 2 0 x_2^0 x20 of commodity 2.

在这里插入图片描述

Based on Axioms 1 and 2, the consumer’s preference relation with respect to any given point x 0 x_0 x0 can be categorized into three mutually exclusive sets relative to x 0 x^0 x0:

  • the set of points worse than x 0 x^0 x0 ($ \prec (x^0) $),

  • the set of points indifferent to x 0 x^0 x0 ($ \sim (x^0) $),

  • and the set of points preferred to x 0 x^0 x0 ($ \succ (x^0) $).

    Therefore, for any bundle x 0 x_0 x0, the three sets $ \prec (x^0) $, $ \sim (x^0) $, and $ \succ (x^0) $ partition the consumption set X X X.

References

[1] Geoffrey A. Jehle, Philip J. Reny Advanced Microeconomic Theory, 3rd Edition ( 2011, Prentice Hall).

<For personal Advanced Microeconomic Theory course learning. Weiye 20231021>

这篇关于C1-1: Consumer Theory-Primitive Notions, Preference Relations and categories.的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349771

相关文章

Yii框架relations的使用

通过在 relations() 中声明这些相关对象,我们就可以利用强大的 Relational ActiveRecord (RAR) 功能来访问资讯的相关对象,例如它的作者和评论。不需要自己写复杂的 SQL JOIN 语句。 前提条件 在组织数据库时,需要使用主键与外键约束才能使用ActiveReocrd的关系操作; 场景 申明关系 两张表之间的关系无非三种:一对多;一对一;多对多; 在

C1-2 ABB二次SDK开发——手把手教登录对应的机器人控制器(图片引导操作)登录机器人控制器和刷新机器人列表

1.完成配置后我们开始进行操作 C1-1 ABB二次SDK开发——C#Window窗体-环境配置(带ABB二次开发SDK资源包)-CSDN博客文章浏览阅读95次。3.记住路径,右键C#引用,然后导入ABB.Robotics.Controllers.PC.dll。2.安装资源文件PCABB二次开发的SDK,并打开安装路径。1.新建VSC#的windowfrom项目。4.在框架代码主界面代码中添加。

LEAN 类型理论之注解(Annotations of LEAN Type Theory)—— 定义上相等(Definitional Equality)

定义上相等(Definitional Equality)指的是意义上相等,即同义,包括了,定义的缩写(Abbreviatory Definition),alpha转换,相同替代(substituting equals for equals)等。下面是LEAN给定的何谓 定义上相等。          注:罗列的推演规则中,如自明其义的,则不多加解析其前提、结果、或特定注解。

C1-1 ABB二次SDK开发——C#Window窗体-环境配置(带ABB二次开发SDK资源包)

一.使用Visual Stdio创建一个项目 1.新建VSC#的windowfrom项目 2.安装资源文件PCABB二次开发的SDK,并打开安装路径 3.记住路径,右键C#引用,然后导入ABB.Robotics.Controllers.PC.dll 4.在框架代码主界面代码中添加 using ABB.Robotics.Controllers;using ABB.Roboti

yolov8代码记录---(tasks.py中的c1、c2和args) / (断点续训)

一、task中的c1、c2和args参数解析 如果你想在yolov8中修改或添加 新的结构块,基本都会修改到task.py中的c1、c2和args参数。 此处以Conv所在的判断分支代码为例: if m in (Classify, Conv, ConvTranspose, ..., C3x, RepC3):c1, c2 = ch[f], args[0]if c2 != nc:c2 = make_

RocketMQ源码分析----Consumer消费进度相关

在Consumer消费的时候总有几个疑问: 消费完成后,这个消费进度存在哪里消费完成后,还没保存消费进度就挂了,会不会导致重复消费 Consumer 消费进度保存 消费完成后,会返回一个ConsumeConcurrentlyStatus.CONSUME_SUCCESS告诉MQ消费成功,以MessageListener的consumeMessage为入口分析。 消费的时候,是以Consum

hdu 3449 Consumer (依赖01背包)

题目:         链接:点击打开链接 题意: 思路:         dp[i][j]表示前i个箱子装j钱的材料能够得到的最大价值。 代码: #include<iostream>#include<cstdio>#include<cstring>using namespace std;#define MAXN 100010int dp[55][MAXN];int mai

day58-graph theory-part08-8.29

tasks for today: 1. 拓扑排序 117.软件构建 2. dijkstra算法 47.参加科学大会 --------------------------------------------------------------------------------- 1. 拓扑排序 117.软件构建 In this practice, it involves mainly t

深入理解DPO(Direct Preference Optimization)算法

目录 1. 什么是DPO?2. Bradley-Terry模型2.1 奖励模型的训练 3. 从PPO到DPO4. DPO的简单实现5. 梯度分析Ref 1. 什么是DPO? 直接偏好优化(Direct Preference Optimization, DPO)是一种不需要强化学习的对齐算法。由于去除了复杂的强化学习算法,DPO 可以通过与有监督微调(SFT)相似的复杂度实现模型对

day57-graph theory-part07-8.28

tasks for today: 1. prim算法 53.寻宝 2. kruskal算法 53.寻宝 ---------------------------------------------------------------------------- 1. prim算法 53.寻宝 In this practice, we see how prim algorithm is use