深入理解DPO(Direct Preference Optimization)算法

2024-08-29 15:04

本文主要是介绍深入理解DPO(Direct Preference Optimization)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 什么是DPO?
  • 2. Bradley-Terry模型
    • 2.1 奖励模型的训练
  • 3. 从PPO到DPO
  • 4. DPO的简单实现
  • 5. 梯度分析
  • Ref

1. 什么是DPO?

直接偏好优化(Direct Preference Optimization, DPO)是一种不需要强化学习的对齐算法。由于去除了复杂的强化学习算法,DPO 可以通过与有监督微调(SFT)相似的复杂度实现模型对齐,不再需要在训练过程中针对大语言模型进行采样,同时超参数的选择更加容易。

2. Bradley-Terry模型

Bradley-Terry模型对比较关系进行建模,设 A A A 的实力为 λ 1 \lambda_1 λ1 B B B 的实力为 λ 2 \lambda_2 λ2,那么 A A A B B B 对战, A A A 战胜 B B B 的概率为:

P ( A > B ) = e λ 1 e λ 1 + e λ 2 = α 1 α 1 + α 2 , α 1 ≜ e λ 1 , α 2 ≜ e λ 2 P(A>B)=\frac{e^{\lambda_1}}{e^{\lambda_1}+e^{\lambda_2}}=\frac{\alpha_1}{\alpha_1+\alpha_2},\quad \alpha_1\triangleq e^{\lambda_1},\quad \alpha_2\triangleq e^{\lambda_2} P(A>B)=eλ1+eλ2eλ1=α1+α2α1,α1eλ1,α2eλ2

因为无法保证 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2 一定大于0,所以需要用softmax函数处理一下。

举一个例子,假设有如下的胜负表:

对战
A vs B84
A vs C35

若要求 B B B 战胜 C C C 的概率,我们需要知道 α 2 , α 3 \alpha_2,\alpha_3 α2,α3 的值。首先可以得到似然函数:

L = ( α 1 α 1 + α 2 ) 8 ( α 2 α 1 + α 2 ) 4 ( α 1 α 1 + α 3 ) 3 ( α 3 α 1 + α 3 ) 5 L=\left(\frac{\alpha_1}{\alpha_1+\alpha_2}\right)^8 \left(\frac{\alpha_2}{\alpha_1+\alpha_2}\right)^4 \left(\frac{\alpha_1}{\alpha_1+\alpha_3}\right)^3 \left(\frac{\alpha_3}{\alpha_1+\alpha_3}\right)^5 L=(α1+α2α1)8(α1+α2α2)4(α1+α3α1)3(α1+α3α3)5

对对数似然函数求偏导可以得到 α 2 = 1 2 α 1 , α 3 = 5 3 α 1 \alpha_2=\frac12\alpha_1,\,\alpha_3=\frac53\alpha_1 α2=21α1,α3=35α1。于是

P ( B > C ) = α 2 α 2 + α 3 = 1 2 1 2 + 5 3 = 3 13 P(B>C)=\frac{\alpha_2}{\alpha_2+\alpha_3}=\frac{\frac12}{\frac12+\frac53}=\frac{3}{13} P(B>C)=α2+α3α2=21+3521=133

2.1 奖励模型的训练

奖励模型的训练涉及到正例 ( x , y + ) (x,y^+) (x,y+) 和负例 ( x , y − ) (x,y^-) (x,y),其中 x x x 是prompt, y y y 是response。由于 r ( x , y ) r(x,y) r(x,y) 可能是负数,因此在使用Bradley-Terry建模时,需要预先过一下softmax:

P ( y + > y − ∣ x ) = exp ⁡ ( r ( x , y + ) ) exp ⁡ ( r ( x , y + ) ) + exp ⁡ ( r ( x , y − ) ) = 1 1 + exp ⁡ ( r ( x , y − ) − r ( x , y + ) ) = σ ( r ( x , y + ) − r ( x , y − ) ) \begin{aligned} P(y^+>y^-|x)&=\frac{\exp (r(x,y^+))}{\exp (r(x,y^+))+\exp (r(x,y^-))}=\frac{1}{1+\exp(r(x,y^-)- r(x,y^+))} \\ &=\sigma (r(x,y^+)-r(x,y^-)) \end{aligned} P(y+>yx)=exp(r(x,y+))+exp(r(x,y))exp(r(x,y+))=1+exp(r(x,y)r(x,y+))1=σ(r(x,y+)r(x,y))

其中 σ ( x ) = 1 1 + e − x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1 是Sigmoid函数。训练奖励模型实际上就是最大化 P ( y + > y − ∣ x ) P(y^+>y^-|x) P(y+>yx) 的过程,这等价于最小化 − log ⁡ P ( y + > y − ∣ x ) -\log P(y^+>y^-|x) logP(y+>yx),因此可以得到奖励模型训练的损失函数:

L RM = − E ( x , y + , y − ) ∼ D [ log ⁡ σ ( r ( x , y + ) − r ( x , y − ) ) ] \mathcal{L}_{\text{RM}} =-\mathbb{E}_{(x,y^+,y^-)\sim \mathcal{D}} [\,\log\sigma(r(x,y^+)-r(x,y^-))] LRM=E(x,y+,y)D[logσ(r(x,y+)r(x,y))]

这一过程实际上是对比学习,奖励模型需要学习在提升正例分数的同时,进一步降低负例的分数,以最大化正例和负例之间的分数差异。

3. 从PPO到DPO

传统的RLHF算法需要先在人类偏好数据上训练一个奖励模型,然后再使用这个奖励模型和相关的强化学习算法(如PPO)去指导LLM进一步学习,但这种做法有如下弊端:

  • 奖励建模的过程较为复杂,需要额外的计算开销。
  • 强化学习流程复杂,过程不稳定,且对超参数敏感。

DPO可以直接让策略模型在人类偏好数据上学习,省去了构建奖励模型和进行强化学习的步骤,故得名直接偏好优化(Direct Preference Optimization)。

我们先来看使用KL散度作为正则项的PPO算法,为了推导更为简便,我们可以将优化目标重写为下式:

max ⁡ π θ E x ∼ D , y ∼ π θ [ r ( x , y ) ] − β KL [ π θ ( y ∣ x ) ∥ π ref ( y ∣ x ) ] \max_{\pi_{\theta}} \mathbb{E}_{x\sim D,y\sim \pi_{\theta}} [r(x,y)]-\beta \text{KL} [\pi_{\theta}(y|x) \,\|\, \pi_{\text{ref}}(y|x)] πθmaxExD,yπθ[r(x,y)]βKL[πθ(yx)πref(yx)]

其中 r ( x , y ) r(x,y) r(x,y) 是奖励函数, π θ \pi_{\theta} πθ 是策略模型(待训练的模型), π ref \pi_{\text{ref}} πref 是参考模型(冻结),两者均从SFT模型初始化得来。在RLHF阶段,我们一方面需要最大化奖励,一方面又不能让策略模型偏离参考模型太远。

注意到 P ( y + > y − ∣ x ) P(y^+>y^-|x) P(y+>yx) 仅跟 r ( x , y ) r(x,y) r(x,y) 有关,如果我们能够找到 π θ \pi_{\theta} πθ r ( x , y ) r(x,y) r(x,y) 之间的关系,我们就能用 π θ \pi_{\theta} πθ 去表示 P ( y + > y − ∣ x ) P(y^+>y^-|x) P(y+>yx),进而就能规避奖励建模的过程。这样一来,LLM就能够通过与强化学习等价的形式学习到人类的价值观和偏好。

考虑对PPO的优化目标进行变换:

max ⁡ π θ E x ∼ D , y ∼ π θ [ r ( x , y ) ] − β KL [ π θ ( y ∣ x ) ∥ π ref ( y ∣ x ) ] = max ⁡ π θ E x ∼ D E y ∼ π θ ( y ∣ x ) [ r ( x , y ) − β log ⁡ π θ ( y ∣ x ) π ref ( y ∣ x ) ] = min ⁡ π θ E x ∼ D E y ∼ π θ ( y ∣ x ) [ log ⁡ π θ ( y ∣ x ) π ref ( y ∣ x ) − 1 β r ( x , y ) ] = min ⁡ π θ E x ∼ D E y ∼ π θ ( y ∣ x ) [ log ⁡ π θ ( y ∣ x ) π ref ( y ∣ x ) + log ⁡ 1 exp ⁡ ( 1 β r ( x , y ) ) + log ⁡ 1 1 Z ( x ) − log ⁡ Z ( x ) ] = min ⁡ π θ E x ∼ D E y ∼ π θ ( y ∣ x ) [ log ⁡ π θ ( y ∣ x ) 1 Z ( x ) π ref ( y ∣ x ) exp ⁡ ( 1 β r ( x , y ) ) − log ⁡ Z ( x ) ] \begin{aligned} &\max_{\pi_{\theta}} \mathbb{E}_{x\sim D,y\sim \pi_{\theta}} [r(x,y)]-\beta \text{KL} [\pi_{\theta}(y|x) \,\|\, \pi_{\text{ref}}(y|x)] \\ =&\max_{\pi_{\theta}} \mathbb{E}_{x\sim D} \mathbb{E}_{y\sim \pi_{\theta}(y|x)}\left[ r(x,y)-\beta\log\frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}\right] \\ =&\min_{\pi_{\theta}} \mathbb{E}_{x\sim D} \mathbb{E}_{y\sim \pi_{\theta}(y|x)}\left[ \log\frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}-\frac{1}{\beta}r(x,y)\right] \\ =&\min_{\pi_{\theta}} \mathbb{E}_{x\sim D} \mathbb{E}_{y\sim \pi_{\theta}(y|x)}\left[ \log\frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}+\log\frac{1}{\exp(\frac{1}{\beta}r(x,y))}+\log\frac{1}{\frac{1}{Z(x)}}-\log Z(x)\right] \\ =&\min_{\pi_{\theta}} \mathbb{E}_{x\sim D} \mathbb{E}_{y\sim \pi_{\theta}(y|x)}\left[ \log\frac{\pi_{\theta}(y|x)}{\frac{1}{Z(x)}\pi_{\text{ref}}(y|x)\exp(\frac{1}{\beta}r(x,y))}-\log Z(x)\right] \\ \end{aligned} ====πθmaxExD,yπθ[r(x,y)]βKL[πθ(yx)πref(yx)]πθmaxExDEyπθ(yx)[r(x,y)βlogπref(yx)πθ(yx)]πθminExDEyπθ(yx)[logπref(yx)πθ(yx)β1r(x,y)]πθminExDEyπθ(yx)[logπref(yx)πθ(yx)+logexp(β1r(x,y))1+logZ(x)11logZ(x)]πθminExDEyπθ(yx)[logZ(x)1πref(yx)exp(β1r(x,y))πθ(yx)logZ(x)]

其中 Z ( x ) Z(x) Z(x) 是我们额外引入的配分函数,定义为

Z ( x ) = ∑ y π ref ( y ∣ x ) exp ⁡ ( 1 β r ( x , y ) ) Z(x)=\sum_y \pi_{\text{ref}}(y|x)\exp\left(\frac{1}{\beta}r(x,y)\right) Z(x)=yπref(yx)exp(β1r(x,y))

现定义

π ∗ ( y ∣ x ) = 1 Z ( x ) π ref ( y ∣ x ) exp ⁡ ( 1 β r ( x , y ) ) \pi^*(y|x)=\frac{1}{Z(x)}\pi_{\text{ref}}(y|x)\exp\left(\frac{1}{\beta}r(x,y)\right) π(yx)=Z(x)1πref(yx)exp(β1r(x,y))

容易发现 π ∗ \pi^* π 满足以下两个性质:

  • π ∗ ( y ∣ x ) ≥ 0 \pi^*(y|x)\geq 0 π(yx)0
  • ∑ y π ∗ ( y ∣ x ) = 1 \sum_y \pi^*(y|x)=1 yπ(yx)=1

这说明 π ∗ \pi^* π 是一个概率分布,我们将它代回原式并继续推导:

min ⁡ π θ E x ∼ D E y ∼ π θ ( y ∣ x ) [ log ⁡ π θ ( y ∣ x ) π ∗ ( y ∣ x ) − log ⁡ Z ( x ) ] = min ⁡ π θ E x ∼ D [ E y ∼ π θ ( y ∣ x ) [ log ⁡ π θ ( y ∣ x ) π ∗ ( y ∣ x ) ] − log ⁡ Z ( x ) ] = min ⁡ π θ E x ∼ D [ KL [ π θ ( y ∣ x ) ∥ π ∗ ( y ∣ x ) ] − log ⁡ Z ( x ) ] \begin{aligned} &\min_{\pi_{\theta}} \mathbb{E}_{x\sim D} \mathbb{E}_{y\sim \pi_{\theta}(y|x)}\left[ \log\frac{\pi_{\theta}(y|x)}{\pi^*(y|x)}-\log Z(x)\right] \\ =&\min_{\pi_{\theta}} \mathbb{E}_{x\sim D} \left[ \mathbb{E}_{y\sim \pi_{\theta}(y|x)}\left[ \log\frac{\pi_{\theta}(y|x)}{\pi^*(y|x)} \right]-\log Z(x) \right] \\ =&\min_{\pi_{\theta}} \mathbb{E}_{x\sim D} \left[ \text{KL}[\pi_{\theta}(y|x) \,\|\, \pi^*(y|x)]-\log Z(x) \right] \\ \end{aligned} ==πθminExDEyπθ(yx)[logπ(yx)πθ(yx)logZ(x)]πθminExD[Eyπθ(yx)[logπ(yx)πθ(yx)]logZ(x)]πθminExD[KL[πθ(yx)π(yx)]logZ(x)]

注意到配分函数 Z ( x ) Z(x) Z(x) π θ \pi_{\theta} πθ 无关,因此可以视为常数,所以只需要最小化KL散度这一项。根据Gibbs不等式,我们可以直接得到最优解

π θ ( y ∣ x ) = π ∗ ( y ∣ x ) = 1 Z ( x ) π ref ( y ∣ x ) exp ⁡ ( 1 β r ( x , y ) ) \pi_{\theta}(y|x)=\pi^*(y|x)=\frac{1}{Z(x)}\pi_{\text{ref}}(y|x)\exp\left(\frac{1}{\beta}r(x,y)\right) πθ(yx)=π(yx)=Z(x)1πref(yx)exp(β1r(x,y))

接下来推导 r ( x , y ) r(x,y) r(x,y) π θ \pi_{\theta} πθ 之间的关系。对上式移项可得:

exp ⁡ ( 1 β r ( x , y ) ) = π θ ( y ∣ x ) π ref ( y ∣ x ) ⋅ Z ( x ) r ( x , y ) = β log ⁡ π θ ( y ∣ x ) π ref ( y ∣ x ) + β log ⁡ Z ( x ) \begin{aligned} \exp\left(\frac{1}{\beta}r(x,y)\right)&=\frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}\cdot Z(x)\\ r(x,y)&=\beta\log\frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}+\beta \log Z(x) \end{aligned} exp(β1r(x,y))r(x,y)=πref(yx)πθ(yx)Z(x)=βlogπref(yx)πθ(yx)+βlogZ(x)

我们将这个表达式代入到之前的 P ( y + > y − ∣ x ) P(y^+>y^-|x) P(y+>yx) 中可得:

P ( y + > y − ∣ x ) = σ ( r ( x , y + ) − r ( x , y − ) ) = σ ( β log ⁡ π θ ( y + ∣ x ) π ref ( y + ∣ x ) + β log ⁡ Z ( x ) − β log ⁡ π θ ( y − ∣ x ) π ref ( y − ∣ x ) − β log ⁡ Z ( x ) ) = σ ( β log ⁡ π θ ( y + ∣ x ) π ref ( y + ∣ x ) − β log ⁡ π θ ( y − ∣ x ) π ref ( y − ∣ x ) ) \begin{aligned} P(y^+>y^-|x)&=\sigma (r(x,y^+)-r(x,y^-)) \\ &=\sigma\left(\beta\log\frac{\pi_{\theta}(y^+|x)}{\pi_{\text{ref}}(y^+|x)}+\beta \log Z(x)-\beta\log\frac{\pi_{\theta}(y^-|x)}{\pi_{\text{ref}}(y^-|x)}-\beta \log Z(x) \right) \\ &=\sigma\left(\beta\log\frac{\pi_{\theta}(y^+|x)}{\pi_{\text{ref}}(y^+|x)}-\beta\log\frac{\pi_{\theta}(y^-|x)}{\pi_{\text{ref}}(y^-|x)} \right) \\ \end{aligned} P(y+>yx)=σ(r(x,y+)r(x,y))=σ(βlogπref(y+x)πθ(y+x)+βlogZ(x)βlogπref(yx)πθ(yx)βlogZ(x))=σ(βlogπref(y+x)πθ(y+x)βlogπref(yx)πθ(yx))

最终得到DPO的目标函数:

L DPO = − E ( x , y + , y − ) ∼ D [ log ⁡ σ ( β log ⁡ π θ ( y + ∣ x ) π ref ( y + ∣ x ) − β log ⁡ π θ ( y − ∣ x ) π ref ( y − ∣ x ) ) ] \mathcal{L}_{\text{DPO}}=-\mathbb{E}_{(x,y^+,y^-)\sim \mathcal{D}} \left[ \log\sigma\left(\beta\log\frac{\pi_{\theta}(y^+|x)}{\pi_{\text{ref}}(y^+|x)}-\beta\log\frac{\pi_{\theta}(y^-|x)}{\pi_{\text{ref}}(y^-|x)} \right) \right] LDPO=E(x,y+,y)D[logσ(βlogπref(y+x)πθ(y+x)βlogπref(yx)πθ(yx))]

可以发现 L DPO \mathcal{L}_{\text{DPO}} LDPO L RM \mathcal{L}_{\text{RM}} LRM 的形式十分接近,即DPO具有以下形式的隐式奖励函数:

r θ ( x , y ) = β log ⁡ π θ ( y ∣ x ) π ref ( y ∣ x ) r_{\theta}(x,y)=\beta\log\frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)} rθ(x,y)=βlogπref(yx)πθ(yx)

这也回应了DPO论文标题中的「Your Language Model is Secretly a Reward Model」。

接下来可以总结一下DPO的流程了:

  • π SFT \pi^{\text{SFT}} πSFT 初始化 π θ , π ref \pi_{\theta},\,\pi_{\text{ref}} πθ,πref
  • 对于每个 x x x,用 π ref \pi_{\text{ref}} πref 采样一对答案 ( y 1 , y 2 ) (y_1,y_2) (y1,y2),再让人工标注者去标注,以离线的方式构建人类偏好数据集 D = { x i , y i + , y i − } i = 1 N \mathcal{D}=\{x_i,y_i^+,y_i^-\}_{i=1}^N D={xi,yi+,yi}i=1N
  • 通过最小化 L DPO \mathcal{L}_{\text{DPO}} LDPO 来不断优化 π θ \pi_{\theta} πθ

4. DPO的简单实现

为方便计算,我们对 L DPO \mathcal{L}_{\text{DPO}} LDPO 做个简单的变形:

L DPO = − E ( x , y + , y − ) ∼ D [ log ⁡ σ ( β log ⁡ π θ ( y + ∣ x ) π θ ( y − ∣ x ) − β log ⁡ π ref ( y + ∣ x ) π ref ( y − ∣ x ) ) ] \mathcal{L}_{\text{DPO}}=-\mathbb{E}_{(x,y^+,y^-)\sim \mathcal{D}} \left[ \log\sigma\left(\beta\log\frac{\pi_{\theta}(y^+|x)}{\pi_{\theta}(y^-|x)}-\beta\log\frac{\pi_{\text{ref}}(y^+|x)}{\pi_{\text{ref}}(y^-|x)} \right) \right] LDPO=E(x,y+,y)D[logσ(βlogπθ(yx)πθ(y+x)βlogπref(yx)πref(y+x))]

一种简单的实现:

def dpo_loss(policy_chosen_logps, policy_rejected_logps, ref_chosen_logps, ref_rejected_logps, beta):"""Compute the simplified DPO loss with sigmoid loss type.Args:policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)ref_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,)ref_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,)beta: Temperature controlling strength of KL penaltyReturns:losses: The DPO loss for each example in the batch.chosen_rewards: Rewards for the chosen responses.rejected_rewards: Rewards for the rejected responses."""# Calculate log-ratiospolicy_logratios = policy_chosen_logps - policy_rejected_logpsref_logratios = ref_chosen_logps - ref_rejected_logps# Compute logits for sigmoid losslogits = policy_logratios - ref_logratios# Sigmoid loss typelosses = -F.logsigmoid(beta * logits)# Compute rewardschosen_rewards = beta * (policy_chosen_logps - ref_chosen_logps).detach()rejected_rewards = beta * (policy_rejected_logps - ref_rejected_logps).detach()return losses, chosen_rewards, rejected_rewards

5. 梯度分析

通过对DPO的目标函数求导,我们可以深入理解DPO算法如何针对LLM的参数进行优化。

u = β log ⁡ π θ ( y + ∣ x ) π ref ( y + ∣ x ) − β log ⁡ π θ ( y − ∣ x ) π ref ( y − ∣ x ) u=\beta\log\frac{\pi_{\theta}(y^+|x)}{\pi_{\text{ref}}(y^+|x)}-\beta\log\frac{\pi_{\theta}(y^-|x)}{\pi_{\text{ref}}(y^-|x)} u=βlogπref(y+x)πθ(y+x)βlogπref(yx)πθ(yx),利用Sigmoid函数的性质,我们有:

∇ L DPO = − E ( x , y + , y − ) ∼ D [ ∇ log ⁡ σ ( u ) ] = − E ( x , y + , y − ) ∼ D [ ∇ σ ( u ) σ ( u ) ∇ u ] = − E ( x , y + , y − ) ∼ D [ σ ( − u ) ∇ u ] = − E ( x , y + , y − ) ∼ D [ σ ( r θ ( x , y − ) − r θ ( x , y + ) ) ⋅ ( ∇ log ⁡ π θ ( y + ∣ x ) − ∇ log ⁡ π θ ( y − ∣ x ) ) ] \begin{aligned} \nabla \mathcal{L}_{\text{DPO}}&=-\mathbb{E}_{(x,y^+,y^-)\sim \mathcal{D}}[\nabla\log\sigma(u)]= -\mathbb{E}_{(x,y^+,y^-)\sim \mathcal{D}}\left[\frac{\nabla \sigma(u)}{\sigma(u)}\nabla u\right] \\ &=-\mathbb{E}_{(x,y^+,y^-)\sim \mathcal{D}}\left[ \sigma(-u)\nabla u \right] \\ &=-\mathbb{E}_{(x,y^+,y^-)\sim \mathcal{D}}\left[ \sigma(r_{\theta}(x,y^-)-r_{\theta}(x,y^+)) \cdot (\nabla \log \pi_{\theta}(y^+|x) - \nabla \log \pi_{\theta}(y^-|x)) \right] \end{aligned} LDPO=E(x,y+,y)D[logσ(u)]=E(x,y+,y)D[σ(u)σ(u)u]=E(x,y+,y)D[σ(u)u]=E(x,y+,y)D[σ(rθ(x,y)rθ(x,y+))(logπθ(y+x)logπθ(yx))]

其中 r θ r_{\theta} rθ 是上文提到的隐式奖励函数。

通过对上述目标函数的导数进行分析,可以发现优化过程中会增大 log ⁡ π θ ( y + ∣ x ) \log \pi_\theta(y^+|x) logπθ(y+x) log ⁡ π θ ( y − ∣ x ) \log \pi_\theta(y^-|x) logπθ(yx) 之间的差异。这表明优化过程中训练模型向符合人类偏好的内容靠近 ( y + ) (y^+) (y+),同时尽量避免生成不符合人类偏好的内容 ( y − ) (y^-) (y)

此外,公式的前半部分 σ ( r θ ( x , y − ) − r θ ( x , y + ) ) \sigma(r_\theta(x,y^-) - r_\theta(x,y^+)) σ(rθ(x,y)rθ(x,y+)) 可以看作是梯度的系数,动态地控制梯度下降的步长。可以发现,当策略模型更倾向于生成不符合人类偏好的内容 y − y^- y 时, r θ ( x , y − ) r_\theta(x,y^-) rθ(x,y) r θ ( x , y + ) r_\theta(x,y^+) rθ(x,y+) 之间的差值变大,导致梯度下降的步长变大,从而进行更为激进的参数更新,以避免生成 y − y^- y。反之,当策略模型倾向于生成符合人类偏好的内容 y + y^+ y+ 时,说明策略模型当前具备较好的参数。此时梯度的系数变小,这会使得策略模型的参数的更新幅度降低,防止更新步长过大使得策略模型的性能出现震荡,增加训练的稳定性。


Ref

[1] https://www.bilibili.com/video/BV1GF4m1L7Nt/?spm_id_from=333.337.search-card.all.click
[2] 《大模型综述》
[3] https://en.wikipedia.org/wiki/Bradley%E2%80%93Terry_model

这篇关于深入理解DPO(Direct Preference Optimization)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118196

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO