自学SLAM(7)非线性优化实践:曲线拟合问题(使用ceres库和SLAM常用的g2o库)

本文主要是介绍自学SLAM(7)非线性优化实践:曲线拟合问题(使用ceres库和SLAM常用的g2o库),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在这里插入图片描述

本次文章针对的是第四个视屏中的实践问题

肯定会有部分方法没有说到,比如高斯牛顿法,后面我会把此次视屏对应的作业写好,然后补充到此次博客!!

文章目录

  • 前言
  • 1.曲线拟合题目:
  • 2.非线性最小二乘
    • 2.1 黄金分割法(0.618法)
    • 2.2 最速下降法
  • 3.ceres库实现曲线拟合题目
    • 3.1 安装ceres
    • 3.2 代码及运行
  • 4.g2o库实现曲线拟合题目
    • 4.1 安装g2o
    • 4.2 代码及运行


1.曲线拟合题目:

设有曲线满⾜以下⽅程:
y = exp(ax2 + bx + c) + w
其中 a; b; c 为曲线参数, w 为噪声。现有 N个数据点 (x, y),希望通过此 N 个点来拟合 a; b; c。实验中取N = 100。那么,定义误差为 ei = yi −exp(ax2 i + bxi + c),于是 (a,b, c)的最优解可通过解以下最⼩⼆乘获得:在这里插入图片描述

使用ceres库和g2o库完成该题目

2.非线性最小二乘

![在这里插入图片描述](https://img-blog.csdnimg.cn/42930a0b98ce46b1b2ab40eb3f0c0d1

这里涉及到很多非线性优化的知识,如果你对这些知识没有概念,一定要去中国最好的大学——哔哩哔哩大学先自学一下,什么是凸函数,凸规划,海塞矩阵,黄金分割法(0.618法),最速下降法,牛顿法,高斯牛顿法等等,否则这一块的知识你将无法理解!!!!

我会对某些方法做一些简单的说明:

在这里插入图片描述

2.1 黄金分割法(0.618法)

在这里插入图片描述

2.2 最速下降法

在这里插入图片描述

3.ceres库实现曲线拟合题目

Ceres库来自谷歌。是一个广泛使用的最小二乘问题求解库。

最小二乘问题:最小化观测数据的高维高斯分布形式的误差的平方,就可以得到最优的位姿状态。对于不方便求解的最小二乘问题,可以用迭代的方式,从一个初始值出发,不断地更新当前的优化变量,使目标函数下降。此时,只要找到迭代点的梯度方向即可,而无须寻找全局导函数为零的情况。(这个和神经网络里面的梯度下降方式一样欸!殊途同归的感觉)
在这里插入图片描述

3.1 安装ceres

//安装依赖项
sudo apt-get install liblapack-dev libsuitesparse-dev libgflags-dev 
sudo apt-get install libgoogle-glog-dev libgtest-dev
sudo apt-get install libcxsparse3wget ceres-solver.org/ceres-solver-1.14.0.tar.gz//下载后解压//安装
cd ceres-solver-1.14.0
sudo mkdir build
cd build
cmake ..
make
sudo make install

3.2 代码及运行

main.cpp:

#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>
#include <chrono>using namespace std;// 代价函数的计算模型
struct CURVE_FITTING_COST
{CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {}// 残差的计算template <typename T>bool operator() (const T* const abc,     // 模型参数,有3维T* residual ) const     // 残差{residual[0] = T ( _y ) - ceres::exp ( abc[0]*T ( _x ) *T ( _x ) + abc[1]*T ( _x ) + abc[2] ); // y-exp(ax^2+bx+c)return true;}const double _x, _y;    // x,y数据
};int main ( int argc, char** argv )
{double a=1.0, b=2.0, c=1.0;         // 真实参数值int N=100;                          // 数据点double w_sigma=1.0;                 // 噪声Sigma值cv::RNG rng;                        // OpenCV随机数产生器double abc[3] = {0,0,0};            // abc参数的估计值vector<double> x_data, y_data;      // 数据cout<<"generating data: "<<endl;for ( int i=0; i<N; i++ ){double x = i/100.0;x_data.push_back ( x );y_data.push_back (exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma ));cout<<x_data[i]<<" "<<y_data[i]<<endl;}// 构建最小二乘问题ceres::Problem problem;for ( int i=0; i<N; i++ ){problem.AddResidualBlock (     // 向问题中添加误差项// 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3> ( new CURVE_FITTING_COST ( x_data[i], y_data[i] )),nullptr,            // 核函数,这里不使用,为空abc                 // 待估计参数);}// 配置求解器ceres::Solver::Options options;     // 这里有很多配置项可以填options.linear_solver_type = ceres::DENSE_QR;  // 增量方程如何求解options.minimizer_progress_to_stdout = true;   // 输出到coutceres::Solver::Summary summary;                // 优化信息chrono::steady_clock::time_point t1 = chrono::steady_clock::now();ceres::Solve ( options, &problem, &summary );  // 开始优化chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );cout<<"solve time cost = "<<time_used.count()<<" seconds. "<<endl;// 输出结果cout<<summary.BriefReport() <<endl;cout<<"estimated a,b,c = ";for ( auto a:abc ) cout<<a<<" ";cout<<endl;return 0;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project( ceres_curve_fitting )set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 添加cmake模块以使用ceres库
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )# 寻找Ceres库并添加它的头文件
find_package( Ceres REQUIRED )
include_directories( ${CERES_INCLUDE_DIRS} )# OpenCV
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_DIRS} )add_executable( curve_fitting main.cpp )
# 与Ceres和OpenCV链接
target_link_libraries( curve_fitting ${CERES_LIBRARIES} ${OpenCV_LIBS} )

运行:

cd ceres_curve_fitting
mkdir build
cd build
cmake ..
make
./curve_fitting

在这里插入图片描述

最后一行是估计值,估计值的准确度取决于噪音,也就是代码中(main.cpp)的 w_sigma,噪声越小越接近于实际值a=1,b=2,c=1

4.g2o库实现曲线拟合题目

4.1 安装g2o

这个必须用高博再3rdparty中给的,不然后面会一直出错!

//依赖项
sudo apt-get install libeigen3-dev
sudo apt-get install libsuitesparse-dev
sudo apt-get install qtdeclarative5-dev
sudo apt-get install qt5-qmake
sudo apt-get install libqglviewer-dev
//安装
cd g2o
mkdir build
cd build
sudo ldconfig
cmake ..
make
sudo make install

4.2 代码及运行

main.cpp:

#include <iostream>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>
using namespace std; // 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
{
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWvirtual void setToOriginImpl() // 重置{_estimate << 0,0,0;}virtual void oplusImpl( const double* update ) // 更新{_estimate += Eigen::Vector3d(update);}// 存盘和读盘:留空virtual bool read( istream& in ) {}virtual bool write( ostream& out ) const {}
};// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge: public g2o::BaseUnaryEdge<1,double,CurveFittingVertex>
{
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWCurveFittingEdge( double x ): BaseUnaryEdge(), _x(x) {}// 计算曲线模型误差void computeError(){const CurveFittingVertex* v = static_cast<const CurveFittingVertex*> (_vertices[0]);const Eigen::Vector3d abc = v->estimate();_error(0,0) = _measurement - std::exp( abc(0,0)*_x*_x + abc(1,0)*_x + abc(2,0) ) ;}virtual bool read( istream& in ) {}virtual bool write( ostream& out ) const {}
public:double _x;  // x 值, y 值为 _measurement
};int main( int argc, char** argv )
{double a=1.0, b=2.0, c=1.0;         // 真实参数值int N=100;                          // 数据点double w_sigma=1.0;                 // 噪声Sigma值cv::RNG rng;                        // OpenCV随机数产生器double abc[3] = {0,0,0};            // abc参数的估计值vector<double> x_data, y_data;      // 数据cout<<"generating data: "<<endl;for ( int i=0; i<N; i++ ){double x = i/100.0;x_data.push_back ( x );y_data.push_back (exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma ));cout<<x_data[i]<<" "<<y_data[i]<<endl;}// 构建图优化,先设定g2otypedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;  // 每个误差项优化变量维度为3,误差值维度为1Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); // 线性方程求解器Block* solver_ptr = new Block( linearSolver );      // 矩阵块求解器// 梯度下降方法,从GN, LM, DogLeg 中选g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );// g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr );// g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg( solver_ptr );g2o::SparseOptimizer optimizer;     // 图模型optimizer.setAlgorithm( solver );   // 设置求解器optimizer.setVerbose( true );       // 打开调试输出// 往图中增加顶点CurveFittingVertex* v = new CurveFittingVertex();v->setEstimate( Eigen::Vector3d(0,0,0) );v->setId(0);optimizer.addVertex( v );// 往图中增加边for ( int i=0; i<N; i++ ){CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );edge->setId(i);edge->setVertex( 0, v );                // 设置连接的顶点edge->setMeasurement( y_data[i] );      // 观测数值edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆optimizer.addEdge( edge );}// 执行优化cout<<"start optimization"<<endl;chrono::steady_clock::time_point t1 = chrono::steady_clock::now();optimizer.initializeOptimization();optimizer.optimize(100);chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );cout<<"solve time cost = "<<time_used.count()<<" seconds. "<<endl;// 输出优化值Eigen::Vector3d abc_estimate = v->estimate();cout<<"estimated model: "<<abc_estimate.transpose()<<endl;return 0;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project( g2o_curve_fitting )set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 添加cmake模块以使用ceres库
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )# 寻找G2O
find_package( G2O REQUIRED )
include_directories( ${G2O_INCLUDE_DIRS}"/usr/include/eigen3"
)# OpenCV
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_DIRS} )add_executable( curve_fitting main.cpp )
# 与G2O和OpenCV链接
target_link_libraries( curve_fitting ${OpenCV_LIBS}g2o_core g2o_stuff
)

运行:

cd g2o_curve_fitting
mkdir build
cd build
cmake ..
make
./curve_fitting

在这里插入图片描述
运行出的结果和ceres一样
在这里插入图片描述

这篇关于自学SLAM(7)非线性优化实践:曲线拟合问题(使用ceres库和SLAM常用的g2o库)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/345629

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作