自学SLAM(7)非线性优化实践:曲线拟合问题(使用ceres库和SLAM常用的g2o库)

本文主要是介绍自学SLAM(7)非线性优化实践:曲线拟合问题(使用ceres库和SLAM常用的g2o库),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在这里插入图片描述

本次文章针对的是第四个视屏中的实践问题

肯定会有部分方法没有说到,比如高斯牛顿法,后面我会把此次视屏对应的作业写好,然后补充到此次博客!!

文章目录

  • 前言
  • 1.曲线拟合题目:
  • 2.非线性最小二乘
    • 2.1 黄金分割法(0.618法)
    • 2.2 最速下降法
  • 3.ceres库实现曲线拟合题目
    • 3.1 安装ceres
    • 3.2 代码及运行
  • 4.g2o库实现曲线拟合题目
    • 4.1 安装g2o
    • 4.2 代码及运行


1.曲线拟合题目:

设有曲线满⾜以下⽅程:
y = exp(ax2 + bx + c) + w
其中 a; b; c 为曲线参数, w 为噪声。现有 N个数据点 (x, y),希望通过此 N 个点来拟合 a; b; c。实验中取N = 100。那么,定义误差为 ei = yi −exp(ax2 i + bxi + c),于是 (a,b, c)的最优解可通过解以下最⼩⼆乘获得:在这里插入图片描述

使用ceres库和g2o库完成该题目

2.非线性最小二乘

![在这里插入图片描述](https://img-blog.csdnimg.cn/42930a0b98ce46b1b2ab40eb3f0c0d1

这里涉及到很多非线性优化的知识,如果你对这些知识没有概念,一定要去中国最好的大学——哔哩哔哩大学先自学一下,什么是凸函数,凸规划,海塞矩阵,黄金分割法(0.618法),最速下降法,牛顿法,高斯牛顿法等等,否则这一块的知识你将无法理解!!!!

我会对某些方法做一些简单的说明:

在这里插入图片描述

2.1 黄金分割法(0.618法)

在这里插入图片描述

2.2 最速下降法

在这里插入图片描述

3.ceres库实现曲线拟合题目

Ceres库来自谷歌。是一个广泛使用的最小二乘问题求解库。

最小二乘问题:最小化观测数据的高维高斯分布形式的误差的平方,就可以得到最优的位姿状态。对于不方便求解的最小二乘问题,可以用迭代的方式,从一个初始值出发,不断地更新当前的优化变量,使目标函数下降。此时,只要找到迭代点的梯度方向即可,而无须寻找全局导函数为零的情况。(这个和神经网络里面的梯度下降方式一样欸!殊途同归的感觉)
在这里插入图片描述

3.1 安装ceres

//安装依赖项
sudo apt-get install liblapack-dev libsuitesparse-dev libgflags-dev 
sudo apt-get install libgoogle-glog-dev libgtest-dev
sudo apt-get install libcxsparse3wget ceres-solver.org/ceres-solver-1.14.0.tar.gz//下载后解压//安装
cd ceres-solver-1.14.0
sudo mkdir build
cd build
cmake ..
make
sudo make install

3.2 代码及运行

main.cpp:

#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>
#include <chrono>using namespace std;// 代价函数的计算模型
struct CURVE_FITTING_COST
{CURVE_FITTING_COST ( double x, double y ) : _x ( x ), _y ( y ) {}// 残差的计算template <typename T>bool operator() (const T* const abc,     // 模型参数,有3维T* residual ) const     // 残差{residual[0] = T ( _y ) - ceres::exp ( abc[0]*T ( _x ) *T ( _x ) + abc[1]*T ( _x ) + abc[2] ); // y-exp(ax^2+bx+c)return true;}const double _x, _y;    // x,y数据
};int main ( int argc, char** argv )
{double a=1.0, b=2.0, c=1.0;         // 真实参数值int N=100;                          // 数据点double w_sigma=1.0;                 // 噪声Sigma值cv::RNG rng;                        // OpenCV随机数产生器double abc[3] = {0,0,0};            // abc参数的估计值vector<double> x_data, y_data;      // 数据cout<<"generating data: "<<endl;for ( int i=0; i<N; i++ ){double x = i/100.0;x_data.push_back ( x );y_data.push_back (exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma ));cout<<x_data[i]<<" "<<y_data[i]<<endl;}// 构建最小二乘问题ceres::Problem problem;for ( int i=0; i<N; i++ ){problem.AddResidualBlock (     // 向问题中添加误差项// 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3> ( new CURVE_FITTING_COST ( x_data[i], y_data[i] )),nullptr,            // 核函数,这里不使用,为空abc                 // 待估计参数);}// 配置求解器ceres::Solver::Options options;     // 这里有很多配置项可以填options.linear_solver_type = ceres::DENSE_QR;  // 增量方程如何求解options.minimizer_progress_to_stdout = true;   // 输出到coutceres::Solver::Summary summary;                // 优化信息chrono::steady_clock::time_point t1 = chrono::steady_clock::now();ceres::Solve ( options, &problem, &summary );  // 开始优化chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );cout<<"solve time cost = "<<time_used.count()<<" seconds. "<<endl;// 输出结果cout<<summary.BriefReport() <<endl;cout<<"estimated a,b,c = ";for ( auto a:abc ) cout<<a<<" ";cout<<endl;return 0;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project( ceres_curve_fitting )set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 添加cmake模块以使用ceres库
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )# 寻找Ceres库并添加它的头文件
find_package( Ceres REQUIRED )
include_directories( ${CERES_INCLUDE_DIRS} )# OpenCV
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_DIRS} )add_executable( curve_fitting main.cpp )
# 与Ceres和OpenCV链接
target_link_libraries( curve_fitting ${CERES_LIBRARIES} ${OpenCV_LIBS} )

运行:

cd ceres_curve_fitting
mkdir build
cd build
cmake ..
make
./curve_fitting

在这里插入图片描述

最后一行是估计值,估计值的准确度取决于噪音,也就是代码中(main.cpp)的 w_sigma,噪声越小越接近于实际值a=1,b=2,c=1

4.g2o库实现曲线拟合题目

4.1 安装g2o

这个必须用高博再3rdparty中给的,不然后面会一直出错!

//依赖项
sudo apt-get install libeigen3-dev
sudo apt-get install libsuitesparse-dev
sudo apt-get install qtdeclarative5-dev
sudo apt-get install qt5-qmake
sudo apt-get install libqglviewer-dev
//安装
cd g2o
mkdir build
cd build
sudo ldconfig
cmake ..
make
sudo make install

4.2 代码及运行

main.cpp:

#include <iostream>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>
using namespace std; // 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
{
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWvirtual void setToOriginImpl() // 重置{_estimate << 0,0,0;}virtual void oplusImpl( const double* update ) // 更新{_estimate += Eigen::Vector3d(update);}// 存盘和读盘:留空virtual bool read( istream& in ) {}virtual bool write( ostream& out ) const {}
};// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge: public g2o::BaseUnaryEdge<1,double,CurveFittingVertex>
{
public:EIGEN_MAKE_ALIGNED_OPERATOR_NEWCurveFittingEdge( double x ): BaseUnaryEdge(), _x(x) {}// 计算曲线模型误差void computeError(){const CurveFittingVertex* v = static_cast<const CurveFittingVertex*> (_vertices[0]);const Eigen::Vector3d abc = v->estimate();_error(0,0) = _measurement - std::exp( abc(0,0)*_x*_x + abc(1,0)*_x + abc(2,0) ) ;}virtual bool read( istream& in ) {}virtual bool write( ostream& out ) const {}
public:double _x;  // x 值, y 值为 _measurement
};int main( int argc, char** argv )
{double a=1.0, b=2.0, c=1.0;         // 真实参数值int N=100;                          // 数据点double w_sigma=1.0;                 // 噪声Sigma值cv::RNG rng;                        // OpenCV随机数产生器double abc[3] = {0,0,0};            // abc参数的估计值vector<double> x_data, y_data;      // 数据cout<<"generating data: "<<endl;for ( int i=0; i<N; i++ ){double x = i/100.0;x_data.push_back ( x );y_data.push_back (exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma ));cout<<x_data[i]<<" "<<y_data[i]<<endl;}// 构建图优化,先设定g2otypedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;  // 每个误差项优化变量维度为3,误差值维度为1Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); // 线性方程求解器Block* solver_ptr = new Block( linearSolver );      // 矩阵块求解器// 梯度下降方法,从GN, LM, DogLeg 中选g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );// g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr );// g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg( solver_ptr );g2o::SparseOptimizer optimizer;     // 图模型optimizer.setAlgorithm( solver );   // 设置求解器optimizer.setVerbose( true );       // 打开调试输出// 往图中增加顶点CurveFittingVertex* v = new CurveFittingVertex();v->setEstimate( Eigen::Vector3d(0,0,0) );v->setId(0);optimizer.addVertex( v );// 往图中增加边for ( int i=0; i<N; i++ ){CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );edge->setId(i);edge->setVertex( 0, v );                // 设置连接的顶点edge->setMeasurement( y_data[i] );      // 观测数值edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆optimizer.addEdge( edge );}// 执行优化cout<<"start optimization"<<endl;chrono::steady_clock::time_point t1 = chrono::steady_clock::now();optimizer.initializeOptimization();optimizer.optimize(100);chrono::steady_clock::time_point t2 = chrono::steady_clock::now();chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>( t2-t1 );cout<<"solve time cost = "<<time_used.count()<<" seconds. "<<endl;// 输出优化值Eigen::Vector3d abc_estimate = v->estimate();cout<<"estimated model: "<<abc_estimate.transpose()<<endl;return 0;
}

CMakeLists.txt:

cmake_minimum_required( VERSION 2.8 )
project( g2o_curve_fitting )set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -O3" )# 添加cmake模块以使用ceres库
list( APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake_modules )# 寻找G2O
find_package( G2O REQUIRED )
include_directories( ${G2O_INCLUDE_DIRS}"/usr/include/eigen3"
)# OpenCV
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_DIRS} )add_executable( curve_fitting main.cpp )
# 与G2O和OpenCV链接
target_link_libraries( curve_fitting ${OpenCV_LIBS}g2o_core g2o_stuff
)

运行:

cd g2o_curve_fitting
mkdir build
cd build
cmake ..
make
./curve_fitting

在这里插入图片描述
运行出的结果和ceres一样
在这里插入图片描述

这篇关于自学SLAM(7)非线性优化实践:曲线拟合问题(使用ceres库和SLAM常用的g2o库)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/345629

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —