基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery

本文主要是介绍基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery

    • 前言
    • 问题描述
    • 排查索引库分词(发现问题)
    • 如何去解决这个问题?
    • IK 分词器
    • NGram 分词器使用
    • 替换 NGram 分词器后进行测试
    • matchPhraseQuery 查询原理
    • termQuery 查询原理
    • 总结

前言

之前不是写过一个全局搜索的功能吗,用户在使用的时候,搜(进出口)关键字,说搜不到数据,但是 Es 中确实是有一条标题为 (202009 进出口)的数据的,按道理来说,这确实要命中的,于是我开始回想我当时是如何写的这段搜索逻辑的代码!!!!

问题描述

之前所有检索的字段全是用的 matchPhraseQuery 查询,matchPhraseQuery 命中的条件其一就是,搜索字段所有的分词都要被 Es 词库命中,其二就是命中的分词在词库中的顺序要紧挨着的。不然就没法查出数据。接下来举例帮助大家理解。

  if (StringUtils.isNotEmpty(articleRequest.getKeyword())) {for (int i = 0; i < articleRequest.getKeys().length; i++) {boolQuery.should(QueryBuilders.matchPhraseQuery(articleRequest.getKeys()[i], articleRequest.getKeyword()));}}

使用 kibana 控制台,编写一条 DLS语句,由于 Es 默认使用的分词器是用的 standard,于是查看一下查(进出口)关键字,是被分词成了(进,出,口)

POST _analyze
{"analyzer": "standard","text": "进出口"
}

在这里插入图片描述
一开始建索引的时候,所有字段都没有指定分词器,都是用的默认的 standard 分词器,因此在使用 matchPhraseQuery 的时候,无论是 title 含有(进出口)还是 body 含有(进出口)关键字的数据都能够被正常检索出来,原因就是词库也是按照(进,出,口)存储的,查的关键字也是被分词成(进,出,口)进行匹配词库查询的,所有分词:位置紧挨着、顺序一致、且完全被包含。
在这里插入图片描述
但是后来遇到一个问题就是,搜字母或者是数字,搜不到数据,例如:搜 20 ,但是明明有标题为 (202009 进出口数据 33)的数据,就搜不出来。到这里你会怎么去排查问题?接下来说下我的整个排查问题的流程。

排查索引库分词(发现问题)

基于默认的 standar 分词器查看一下, title 为 (202009 进出口数据33)是如何被分词存到词库中的

POST _analyze
{"analyzer": "standard","text": "202009 进出口数据33"
}

在这里插入图片描述
看了一下 202009 居然没有被分词,而是被当做了一个整体,当我们搜 20 的时候,是按照 20 的这个分词进行查询的,但是索引库中并没有 20 的分词,即不满足查询分词都要被词库包含的关系,更不满足分词顺序和词库保持一致,更不满足命中词库中的分词是紧挨着的条件,三大条件都不满足,能查到才怪呢?怎么去优化搜索逻辑?在这里插入图片描述

如何去解决这个问题?

接下来肯定就是优化索引库中存储的分词结构了,让 title 为( 202009 进出口数据 33) 的这条数据,存储的分词包含 (20),而不是粗略的包含一个(202009),当然你也可以使用 Es 的 模糊查询 wildcard 或者 fuzzy ,考虑到数据量过大,查询性能不咋地,决定优化索引结构,用空间换时间!!!!为什么是空间换时间?存的分词粒度都变细了,意味着存的索引体积变大,这些数据都要硬件来存储的,可不是空间换时间嘛。接下来用主流的 IK 分词器去分下词看满不满足我们的需求

IK 分词器

编写 DLS 语句,对目标数据分词,看到还是没有(20)的分词出现,直接 Pass

POST _analyze
{"analyzer": "ik_max_word","text": "202009进出口数据 33"
}

在这里插入图片描述
对字母分词一样,粒度不满足我们的需求,直接 Pass
在这里插入图片描述

NGram 分词器使用

接下来说本文的主角 NGram 分词器,分词的粒度可以由我们自己控制。在建索引的时候设置一下 Setting 代码都是固定的就好像你使用 Java Api一样,需要注意的是里面的 min_gram 指定最小分词粒度,max_gram 指定最大分词粒度。自定义分词器名字为:my_ngram_analyzer 接来举例说明,这个自定义分词器是干啥的!!!

private static String defaultIndexSetting = "{\n" +"        \"index.max_ngram_diff\":10,\n" +"        \"analysis\": {\n" +"          \"analyzer\": {\n" +"            \"my_ngram_analyzer\": {\n" +"              \"tokenizer\": \"my_ngram_tokenizer\"\n" +"            }\n" +"          },\n" +"          \"tokenizer\": {\n" +"            \"my_ngram_tokenizer\": {\n" +"              \"type\": \"ngram\",\n" +"              \"min_gram\": 1,\n" +"              \"max_gram\": 10,\n" +"              \"token_chars\": [\n" +"                \"letter\",\n" +"                \"digit\"\n" +"              ]\n" +"            }\n" +"          }\n" +"        }\n" +"      }";

由于我只对 title 字段设置了自定义分词器,mapping 如下。

 private static String defaultIndexMapping = "{\n" +"\t\"properties\": {\n" +"\t\t\"author\": {\n" +"\t\t\t\"type\": \"text\",\n" +"\t\t\t\"boost\": \"3\",\n" +"\t\t\t\"fields\": {\n" +"\t\t\t\t\"keyword\": {\n" +"\t\t\t\t\t\"type\": \"keyword\",\n" +"\t\t\t\t\t\"ignore_above\": 256\n" +"\t\t\t\t}\n" +"\t\t\t}\n" +"\t\t},\n" +"\t\t\"body\": {\n" +"\t\t\t\"type\": \"text\",\n" +"\t\t\t\"fields\": {\n" +"\t\t\t\t\"keyword\": {\n" +"\t\t\t\t\t\"type\": \"keyword\",\n" +"\t\t\t\t\t\"ignore_above\": 256\n" +"\t\t\t\t}\n" +"\t\t\t}\n" +"\t\t},\n" +"\t\t\"title\": {\n" +"\t\t\t\"boost\": \"10000\",\n" +"\t\t\t\"type\": \"text\",\n" +"\t\t\t\t\t\t        \"analyzer\": \"my_ngram_analyzer\",\n" +"\t\t\t\"fields\": {\n" +"\t\t\t\t\"keyword\": {\n" +"\t\t\t\t\t\"type\": \"keyword\",\n" +"\t\t\t\t\t\"ignore_above\": 256\n" +"\t\t\t\t}\n" +"\t\t\t}\n" +"\t\t},\n" +"\t\t\"createtime\": {\n" +"\t\t\t\"type\": \"date\",\n" +"\t\t\t\"format\": \"yyyy-MM-dd HH:mm:ss||yyyy-MM-dd\"\n" +"\t\t}\n" +"\t}\n" +"}\n";

接下来根据最新的 Setting、Mapping 配置替换之前的旧的索引,然后进行测试

log.info("create index mapping: " + tabIndex.getMapping());CreateIndexRequest indexRequest = new CreateIndexRequest(tabIndex.getIndexName().trim()).settings(tabIndex.getSetting(), XContentType.JSON).mapping("_doc", tabIndex.getMapping(), XContentType.JSON);CreateIndexResponse response = null;try {response = restHighLevelClient.indices().create(indexRequest, RequestOptions.DEFAULT);} catch (IOException e) {e.printStackTrace();tabIndexService.delete(new EntityWrapper<TabIndex>().eq("index_name", tabIndex.getIndexName()));return JsonData.buildError("失败" + e.getMessage());}if (response != null) return JsonData.buildSuccess(response.isAcknowledged());else return JsonData.buildError("失败");

替换 NGram 分词器后进行测试

输入关键字:20,发现 title 为 (202009 进出口数据 33) 的这条数据还是查不到???????what fa,再次检查索引库分词,编写 DLS 语句看看,由于创建的新索引的名称是 zza,这里对 zza 索引下面标题包含 (202009 进出口数据 33)的数据进行分词,看看 Es 是如何存的!!!

POST /zza/_analyze
{"field": "title","text": "202009 进出口数据 33"
}

可以看到此时的分词存储了 (2,20,202…)按道理来说查 2 或者 20 或者 202 等等都可以查到这条数据的。难道见鬼啦?于是我决定将代码的生成的 DLS 语句直接 Copy 到 kibana 中跑一下,看到底是代码 Api 的 Bug 还是其他问题。

在这里插入图片描述
于是我就这个 DLS 语句运行了一下,其实不是见鬼了,是我们需要理解一下 termQuery 与 matchPhraseQuery 的查询原理!!!

matchPhraseQuery 查询原理

会将搜索关键字进行分词(这个根据索引用到的分词器一致),然后与词库中的分词进行匹配。例如,现在有一条 title 为(202009 进出口数据 33)的数据,当我们搜 20 的时候,会根据(2,20,0)去匹配词库在这里插入图片描述
但是此时词库是按照(2,20,202…0)这个顺序存的。
再来回顾一下 matchPhraseQuery 命中索引的三大条件

  1. 搜索关键字分词要被词库存的分词完全包含
  2. 在点一的基础上,搜索分词顺序要和词库保持一致
  3. 在前俩点都满足的情况下,词库中匹配到的分词顺序要紧挨着

我们搜关键字 20 时,满足了上述点 1,2。但是不满足点 3,因此使用 matchPhraseQuery 搜不到 title 为(202009 进出口数据 33)的这条数据。那么有什么办法解决吗?答案是有的。就是指定 slop 参数。指定分词紧挨着的最大单位,默认是 1,通过调大这个参数也可以查出来指定数据
在这里插入图片描述
不指定 slop 的情况下查不到数据,但是我现在的需求只要是关键字中包含 20 的数据都要被查到,调 slop 也不是办法,因此 title 字段的搜索不用 matchPhraseQuery,改用 termQuery
在这里插入图片描述

termQuery 查询原理

搜索的关键字不会进行分词去匹配词库,搜 20 就会以 20 去匹配,命中词库中的一个分词即可,例如;现在有一条 title 为(202009 进出口数据 33)的数据,搜关键字 20 即可查出数据,满足现有的业务需求。
在这里插入图片描述

因此最后还改造了一下业务代码逻辑大概是这样,title 字段用 termQuery,其他字段用 matchPhraseQuery。就可以了。

if (StringUtils.isNotEmpty(articleRequest.getKeyword())) {for (int i = 0; i < articleRequest.getKeys().length; i++) {if ("title".equals(articleRequest.getKeys()[i]))boolQuery.should(QueryBuilders.termQuery(articleRequest.getKeys()[i], articleRequest.getKeyword()));elseboolQuery.should(QueryBuilders.matchPhraseQuery(articleRequest.getKeys()[i], articleRequest.getKeyword()));}boolQuery.minimumShouldMatch(1);
}

总结

matchPhraseQuery 命中条件

  1. 搜索关键字分词要被词库存的分词完全包含
  2. 在点一的基础上,搜索分词顺序要和词库保持一致
  3. 在前俩点都满足的情况下,词库中匹配到的分词顺序要紧挨着
    matchPhraseQuery 在查询前会对关键字进行分词,用到的分词器和索引中该字段指定的分词器一致,例如本文的 title 用到了 NGram 分词器,那么使用如下代码,检索 title 字段时,用到的分词器也是用的 Ngram
QueryBuilders.termQuery("title", articleRequest.getKeyword())

在这里插入图片描述

这篇关于基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/345457

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短