DINO训练自己的数据集(swin transformer backbone)

2023-11-04 02:52

本文主要是介绍DINO训练自己的数据集(swin transformer backbone),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源码:https://github.com/IDEA-Research/DINO

数据集:coco格式

COCODIR/├── train2017/├── val2017/└── annotations/├── instances_train2017.json└── instances_val2017.json
环境配置
1. 下载代码
git clone https://github.com/IDEA-Research/DINO.git
cd DINO
2. 新建个环境
conda create -n dino python=3.7 -y    # 新建环境
conda activate dino    # 激活环境
3. 装pytorch(作者版本:python=3.7.3,pytorch=1.9.0,cuda=11.1)
# an example:
conda install -c pytorch pytorch torchvision

        在pytorch.org上找到合适版本的pytorch安装即可,比如我是直接沿用的之前配的vit_adapter环境,版本和作者一样

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
4. 安装其他包
pip install -r requirements.txt
5. 编译 CUDA operators
cd models/dino/ops
python setup.py build install
# unit test (should see all checking is True)
python test.py
cd ../../..

 执行 test.py 后出现 out of memory是正常现象

到这里配置环境就over了

训练
1. 修改配置文件

/config/DINO/DINO_4scale_swin.py 中

1.  num_classes 调整为数据集类别数

2. 修改 dn_labelbook_size 满足 dn_labebook_size >= num_classes + 1

(此处建议复制一份作为自己的config文件进行修改,防止以后弄混出现问题,也方便自己管理,这里我复制了一份命名为 DINO_4scale_swin_custom.py)

2. 下载预训练模型文件等

下载预训练模型 and the checkpoint of Swin-L backbone

3. start to train
bash scripts/DINO_train_submitit_swin.sh /path/to/your/COCODIR /path/to/your/pretrained_backbone

 train from scratch

bash scripts/DINO_train_swin.sh /path/to/your/COCODIR /path/to/your/pretrained_backbone_dir

或者 

python main.py \--output_dir logs/DINO/R50-MS4 -c ./config/DINO/DINO_4scale_swin_custom.py --coco_path ./coco_path \--options dn_scalar=100 embed_init_tgt=TRUE \dn_label_coef=1.0 dn_bbox_coef=1.0 use_ema=False \dn_box_noise_scale=1.0 backbone_dir=./backbone_dir

finetune with pre-trained models

bash scripts/DINO_train_swin.sh /path/to/your/COCODIR /path/to/your/pretrained_backbone --pretrain_model_path /path/to/a/pretrianed/model --finetune_ignore label_enc.weight class_embed

 指定GPU序号的话在 /path/to/your/pretrained_backbone后加上序号数即可,即第三个参数

ps. 如果是用的自己的config文件,那么需要修改 DINO_train_swin.sh 里面的参数,把里面的 DINO_4scale_swin.py 修改为自己的文件名即可

遇到的报错

第一次train的时候出现报错 RuntimeError: No shared folder available dino 

解决方法:在项目文件夹下新建一个名为comp_robot的文件夹,该文件夹内再新建一个名为experiments的文件夹,然后在根目录下的run_with_submitit.py中找到get_shared_folder()函数,将其中的 /comp_robot 换为自己的文件夹所在路径,/comp_robot/{user}/experiments 同理

占用现存好大,改天再跑,先记录一下我自己的指令(服务器103 环境名vit_adapter)

 bash scripts/DINO_train_swin.sh /data/zy/dataset/project/Cooper001_withlabel/coco/ /data/zy/code/DINO-main/pretrained/ 2 --pretrain_model_path /data/zy/code/DINO-main/pretrained/checkpoint0011_4scale_swin.pth --finetune_ignore label_enc.weight class_embed

这篇关于DINO训练自己的数据集(swin transformer backbone)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342725

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者