NGO-ESN基于北方苍鹰算法优化回声状态网络的多变量回归预测 可直接运行 注释清晰~Matlab

本文主要是介绍NGO-ESN基于北方苍鹰算法优化回声状态网络的多变量回归预测 可直接运行 注释清晰~Matlab,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

在当今信息时代,数据的价值变得愈发重要。人们对于数据的收集、分析和预测的需求也越来越迫切。特别是在经济、金融和科学领域,准确的预测模型可以为决策者提供宝贵的参考,帮助他们做出明智的决策。然而,由于数据的复杂性和多变性,构建一个准确可靠的预测模型并非易事。

为了解决这个问题,研究者们提出了许多不同的预测算法和模型。其中,回声状态网络(Echo State Network,简称ESN)作为一种基于循环神经网络的预测模型,因其出色的性能和简单的实现而备受关注。然而,ESN模型在处理多变量回归预测问题时存在一定的限制。

为了改进ESN模型在多变量回归预测中的性能,一种名为北方苍鹰算法(Northern Goshawk Optimization,简称NGO)的优化算法被引入。NGO算法是一种基于自然界中北方苍鹰觅食行为的启发式优化算法,其具有全局搜索能力和高效性的优点。通过将NGO算法与ESN模型相结合,可以得到一个更加准确和可靠的多变量回归预测模型。

在NGO-ESN模型中,首先利用NGO算法对ESN网络的权重和阈值进行优化,以提高模型的拟合能力。NGO算法通过模拟北方苍鹰的觅食行为,实现了对搜索空间的全局搜索,并通过适应度函数的评估来选择最优解。然后,将优化后的权重和阈值应用于ESN模型中,得到一个更加准确和稳定的预测模型。

与传统的ESN模型相比,NGO-ESN模型在多变量回归预测中具有明显的优势。首先,NGO-ESN模型通过NGO算法的优化,可以更好地拟合和预测多变量之间的复杂关系。其次,NGO-ESN模型具有更高的预测准确率和稳定性,可以为决策者提供更可靠的决策依据。最后,NGO-ESN模型的实现相对简单,可以快速应用于各种领域的多变量回归预测问题中。

总之,NGO-ESN基于北方苍鹰算法优化回声状态网络的多变量回归预测模型是一种非常有潜力的预测方法。它的引入不仅提高了ESN模型在多变量回归预测中的性能,还为决策者提供了更准确和可靠的预测结果。随着数据科学和人工智能的不断发展,NGO-ESN模型有望在各个领域发挥重要作用,为我们的社会和经济发展做出更大的贡献。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 付琳娟,翟正军,郭阳明.基于回声状态网络的多变量预测模型的研究[J].计算机测量与控制, 2009(7):4.DOI:CNKI:SUN:JZCK.0.2009-07-040.

[2] 张亚楠,赵丽娜.基于改进粒子群算法优化回声状态网络的时间序列预测[J].计算机科学与应用, 2021, 11(8):10.DOI:10.12677/CSA.2021.118212.

[3] 宋绍剑,王尧,林小峰,等.基于蚁群算法优化回声状态网络的研究[J].计算机工程与科学, 2017, 39(12):7.DOI:CNKI:SUN:JSJK.0.2017-12-023.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于NGO-ESN基于北方苍鹰算法优化回声状态网络的多变量回归预测 可直接运行 注释清晰~Matlab的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341343

相关文章

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable