BERT和ALBERT的区别;BERT和RoBERTa的区别;与bert相关的模型总结

2023-11-03 20:28

本文主要是介绍BERT和ALBERT的区别;BERT和RoBERTa的区别;与bert相关的模型总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.BERT和ALBERT的区别:

BERT和ALBERT都是基于Transformer的预训练模型,它们的几个主要区别如下:

  1. 模型大小:BERT模型比较大,参数多,计算资源消耗较大;而ALBERT通过技术改进,显著减少了模型的大小,降低了计算资源消耗。

  2. 参数共享:ALBERT引入了跨层参数共享机制,即在整个模型的所有层中,隐藏层的参数是共享的,也就是说每一层都使用相同的参数。相比之下,BERT中每一层的参数都是独立的。

  3. 嵌入参数因子化:在BERT中,词嵌入的维度和隐藏层的大小是等价的。但在ALBERT中,词嵌入的维度被因子化为两个较小的矩阵,相比BERT进一步减小了模型参数数量。

  4. 损失函数:ALBERT中的损失函数增加了一个句子顺序预测(SOP)任务,即预测两个句子的先后顺序,这是为了更好地建模句子间的连贯性。与此相比,BERT原生的模型中并不包含这个功能。

  5. 效果对比:尽管ALBERT模型比BERT小,但其性能却未受影响,甚至在某些任务上表现出更好的效果。

  6. 训练效率:由于模型大小的差异,ALBERT相较于BERT在训练时拥有更高的效率。

总的来说,ALBERT主要针对BERT模型大、参数多的问题进行优化,以降低计算资源消耗,提高训练效率,同时保持或提升模型性能。

二.BERT和RoBERTa的区别:

BERT和RoBERTa都是基于Transformer的自然语言处理预训练模型,它们都采用了masked language model(MLM)的形式来进行训练。以下是它们主要的区别:

  1. 训练数据和处理:尽管两者都使用大规模的无标签文本来进行预训练,但是在数据处理上有所不同。RoBERTa去掉了BERT中的next sentence prediction(NSP)任务,因此在数据处理上不再需要将两个句子合并为一条训练样本,这对于模型性能的提升起了重要作用。

  2. 训练模型:RoBERTa使用了动态mask机制,即在每个epoch中,对输入的文本进行不同的mask,这与BERT中的静态mask策略不同。

  3. 超参数的设定:RoBERTa通过大幅增加BERT预训练的Batch Size和学习率,并延长训练时间,成功地提升了模型的性能。

  4. 训练速度和效率:RoBERTa通过优化并行化训练技术以加快训练速度,比如增加最大序列长度,改变batch size的设定等。

  5. 效果:RoBERTa在多项自然语言处理任务上比BERT展示出了更好的效果。

总的来说,RoBERTa可被视为是BERT的一种优化版模型,通过改进BERT的训练策略和技术细节,大幅提升了模型的性能。

 

三.与bert相关的模型总结:

  1. GPT (Generative Pre-training Transformer): 类似BERT,GPT也是一种基于Transformer架构的预训练模型。与BERT不同的是,GPT只用到了Transformer的解码器部分,并且采用了不同的预训练任务,使用单向语言模型进行训练。

  2. RoBERTa (Robustly optimized BERT pretraining approach): RoBERTa是对BERT预训练方法的改进,移除了BERT中的Next Sentence Prediction(NSP)任务,并且修改了训练数据的大小和批次,从而进一步提升了模型性能。

  3. ALBERT (A Lite BERT): ALBERT是BERT的一个变种,减少了模型参数数量,超越了原BERT在各种下游任务的性能。使用了参数共享和句子顺序预测SOP(sentence-order prediction)两种策略进行优化。

  4. XLNet: XLNet同样是BERT的变种,其采用了自回归预训练方法,解决了BERT由于单向或者双向预训练导致的预训练和微调阶段不一致的问题。

  5. ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately): ELECTRA也是对BERT的改进,使用了一种新的预训练任务,可以更高效地利用语言建模信号。

  6. DISTILBERT: DitiBERT 是BERT的轻量级版本,它通过对BERT进行知识蒸馏,模型参数量减小了40%,但在多个任务上的性能衰减不到 5%。

  7. T5 (Text-to-Text Transfer Transformer): T5将所有NLP任务都视为文本生成任务,并通过在大量无标注文本上预训练来解决这些任务。 T5提取了BERT和其他Transformer预训练任务中的优点。

  8. DeBERTa (Decoding-enhanced BERT with disentangled attention): DeBERTa介绍了一种解耦的注意机制来改进BERT的注意机制,通过调整每个输入令牌的重要性来提高预测性能。

  9. BORT (Optimal Subarchitecture Extraction For BERT): 通过子架构的特征提取,使得BERT更小更快,同时在下游任务上胜过原始的BERT。

  10. TinyBERT: TinyBERT是一种高效的语言表示模型,特别注意在保存精确结果的同时缩小模型大小和加速推断。

  11. SpanBERT: 这个模型对BERT进行了改进,不仅对预训练目标进行了改进(通过推出span级别的任务来捕捉更长的上下文依赖),而且改进了预训练的样本。

  12. MobileBERT: 这是一个为移动设备任务设计的轻量级BERT模型,旨在优化在有资源限制的环境中的速度和效率。

  13. ERNIE (Enhanced Representation through kNowledge IntEgration): ERNIE模型从事先定义的各种知识库中提取结构化的知识,然后将这些知识集成到语言表示模型中。

  14. SciBERT: 是针对科学文献领域经过预训练的BERT变体,目标是解决一般领域预训练模型在科学文献处理上的一些限制。

  15. CamemBERT: CamemBERT是一种针对法语的预训练BERT模型,它在一系列NLP任务上优于以前的最佳模型,包括POS标注、依赖性解析、命名实体识别和情感分析。

  16. XLM-RoBERTa: XLM-RoBERTa是一种针对多种语言的预训练BERT模型,是Facebook在RoBERTa和XLM之间的协同工作的结果。该模型在公共基准上实现了最先进的跨语言效果。

  17. SqueezeBERT: SqueezeBERT是一种用于移动设备的轻量级BERT模型。在保持类似BERT的准确性的同时,减少了的计算复杂性。

  18. MobileBERT: MobileBERT是针对移动和边缘设备设计的轻量级变体,与BERT-base具有类似的准确性,但大小只有其1/4,且运行速度是其4倍。

  19. BERTweet: BERTweet是在Twitter语料库上训练的RoBERTa模型,旨在处理有关推文的NLP任务。

  20. ClinicalBERT: ClinicalBERT是专门为处理临床文本设计的,用于预测患者的一些临床任务,比如入院风险,死亡率等。

  21. VideoBERT: 是一种理解和生成视频中自然语言及视觉语境的模型。它接受视频和配套文本作为输入,输出一个公共嵌入,可以用于视觉任务和文本任务。

        以上都是一些BERT的变体,它们的主要区别在于预训练方式、参数、模型大小和训练数据。这些变体的目标是优化BERT的某些方面,例如提高效率、准确性或特定任务的性能。 

这篇关于BERT和ALBERT的区别;BERT和RoBERTa的区别;与bert相关的模型总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/340665

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言