深度学习:又一次推动AI梦想(Marr理论、语义鸿沟、视觉神经网络、神经形态学)...

本文主要是介绍深度学习:又一次推动AI梦想(Marr理论、语义鸿沟、视觉神经网络、神经形态学)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        几乎每一次神经网络的再流行,都会出现:推进人工智能的梦想之说。偷笑

前言:

Marr视觉分层理论

        Marr视觉分层理论(百度百科):理论框架主要由视觉所建立、保持、并予以解释的三级表象结构组成,这就是:

        a.基元图(the primal sketch)—由于图像的密度变化可能与物体边界这类具体的物理性质相对应,因此它主要描述图像的密度变化及其局部几何关系。
        b. 2.5维图(2.5 Dimensional sketch)—以观察者为中心,描述可见表面的方位、轮廓、深度及其他性质。
        c. 3维模型(3D Model)—以物体为中心,是用来处理和识别物体的三维形状表象。

语义沟壑
      Semantic gap(Wiki百科): CB IR 中的“语义鸿沟”就是:由于计算机获取的图像的视觉信息与用户对图像理解的语义信息的不一致性而导致的低层和高层检索需求间的距离。  
感知鸿沟(sensory gap),它是一种在现实世界的物体和该场景记录下来的(计算上的)描述信息之间的鸿沟。
语义鸿沟(semantic gap),它是由于所视觉数据中提炼出的信息与在特定场合下这些数据对用户的解释之间缺乏一致性。

视神经网络分层模型

        人体生理学研究有几百年的历史,对于视觉神经系统的研究,任然处于实验模拟阶段,并不能得到真正的阻断实验。目前可得出的生理学研究,视神经系统(百科)显示出分层和稀疏特性。并从此能够得到视觉神经系统到语义描述系统(语义鸿沟)的映射。

      自此,深度网络为解决语义鸿沟指出了一个方向,且CNN可以从直觉上模拟人的神经系统,深度学习的深度有了真正地意义。

    

(1):深度学习:推动人工智能梦想

原文链接:http://www.csdn.net/article/2013-05-29/2815479

Key Word:浅层学习,深度学习;

浅层学习:浅层模型有一个重要特点,就是假设靠人工经验来抽取样本的特征,而强调模型主要是负责分类或预测。浅层模型:貌似只有一个隐含层的神经网络。在模型的运用不出差错的前提下(如假设互联网公司聘请的是机器学习的专家),特征的好坏就成为整个系统性能的瓶颈。这样经验就起了很重要的作用!

深度学习:百度在线学习案例。

DNN与微软同声传译背后的故事:http://www.csdn.net/article/2013-06-09/2815737

      “我们谈到AI时,意味着高度抽象,Deep Learning是抽象的一种方式,但它远不是全部。通过神经网络能够识别动物,并不意味就理解了世界,我甚至将其看做‘模式识别’而非‘智能’”,Seide这样认为:“‘深’对智能系统来说很重要,但它不是智能的全部。语音识别可以视为AI领域的一个缩影,DNN也只是语音识别技术中的一部分——若从代码长度的角度考量,它甚至只是全部技术中很小的一部分。”

         PS:这由让我想起来 中文屋子  的哲学讨论

(2):机器学习前沿热点–Deep Learning

           机器学习前沿热点:http://elevencitys.com/?p=1854

         原始链接:http://blog.sina.com.cn/s/blog_46d0a3930101fswl.html

         自 2006 年以来,机器学习领域,取得了突破性的进展。

        图灵试验,至少不是那么可望而不可即了。至于技术手段,不仅仅依赖于云计算对大数据的并行处理能力,而且依赖于算法。这个算法就是,Deep Learning。借助于 Deep Learning 算法,人类终于找到了如何处理 “抽象概念”这个亘古难题的方法。

       于是学界忙着延揽相关领域的大师。Alex Smola 加盟 CMU,就是这个背景下的插曲。悬念是 Geoffrey Hinton和 Yoshua Bengio 这两位牛人,最后会加盟哪所大学。

Geoffrey Hinton 曾经转战 Cambridge、CMU,目前任教University of Toronto。相信挖他的名校一定不少。

Yoshua Bengio 经历比较简单,McGill University 获得博士后,去 MIT 追随 Mike Jordan 做博士后。目前任教 University of Montreal。

Deep Learning 引爆的这场革命,不仅学术意义巨大,而且离钱很近,实在太近了。如果把相关技术难题比喻成一座山,那么翻过这座山,山后就是特大露天金矿。技术难题解决以后,剩下的事情,就是动用资本和商业的强力手段,跑马圈地了。

         于是各大公司重兵集结,虎视眈眈。Google 兵分两路,左路以 Jeff Dean 和 Andrew Ng 为首,重点突破 Deep Learning 等等算法和应用 [3](Introduction to Deep Learning.  http://en.wikipedia.org/wiki/Deep_learning)。

(3):Neuromorphic Engineering- A Stepstone for Artificial Intelligence

          神经形态工程师的目标:http://elevencitys.com/?p=6265

        这个全部黏贴了!

        构建类似人脑的三大特征的计算机是神经形态工程师的目标!(低功耗; 容错性; 自学习)。人类大脑的功率:约20W,当然这还只是TDP,平时消耗更低。容错性:并行处理,因此也意味着并非完备,而是一个概率模型。自学习:这个属于系统级别,包含整个感知-反馈-决策系统,复杂度暂时没办法分析。

        Here I would like to introduce the progress of Neuromorphic engineering(神经形态工程学), a branch of engineering built on electronic devices. The main goal of this subject is to emulate complex neuron network and ion channel dynamics in real time, using highly compact and power-efficient CMOS analog VLSI technology. Compared to traditional software-based computer modeling and simulation, this approach can be implemented in a extremely small size with low power requirement, when is used for large-scale and high speed simulation of neuron. This special feature provide possibility for the real computing applications, such asneuroprothesis, brain-machine interface, neurorobotics, machine learning and so on. [1]

       

         A key aspect of neuromorphic engineering is understanding how the morphology of individual neurons, circuits and overall architectures creates desirable computations, affects how information is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change. Neuromorphic engineering is a new interdisciplinary discipline that takes inspiration from biology, physics, mathematics, computer science and engineering to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems.[2]

         Our human brain has three distinct feature, which are highly parallel processing. quick adaptability,  and self-configuration.  We  have owned a deep understanding about the digital computers from the top to the bottom, from the operating system to the hardware design now. However, some analog computing, for example, voice recognition, learning etc. is not easy to implemented in the digit computers by now. In terms of the accuracy and power efficient, the mammal’s brain is so power and difficult to figure out. Since the artificial intelligence was pointed out in last century, we have invested lots of research effort in many areas, such as computer science, physiology, chemistry etc. to explain our brain. But it seems true that we know much more about the universe than the brain, it is sad, or promising? The only thing we are sure about, is that the brain do more than just information processing.

         Thus engineers began to ask for help from the biology perspective. But it is not so easy to emulate such a large scale computing machine, which owns about 85 billion neurons. Neuromorphic engineering is an important and promising branch to let us find the mystery of our brain. The feature of neuron computing is high parallelism, and adaptive learning, while bad at math. Same as the real CMOS technology, the placement of interconnect is a tricky job in Neuromorphic engineering. This engineering provides a potential to build the machine whose nature is learning.

       

        DARPA SyNAPSE Program is an on-going project to build a electronic neuromorphic machine technology that scales to biological levels. It has made several milestones since it was initialized from 2008.  It should recreate 10 billion neurons, 100 trillion synapses, consume one kilowatt (same as a small electric heater), and occupy less than two liters of space at last. [3]

        The initial phase of the SyNAPSE program developed nanometer scale electronic synaptic components capable of adapting the connection strength between two neurons in a manner analogous to that seen in biological systems(Hebbian learning), and simulated the utility of these synaptic components in core microcircuits that support the overall system architecture.

        Continuing efforts will focus on hardware development through the stages of microcircuit development, fabrication process development, single chip system development, and multi-chip system development.In support of these hardware developments, the program seeks to develop increasingly capable architecture and design tools, very large-scale computer simulations of the neuromorphic electronic systems to inform the designers and validate the hardware prior to fabrication, and virtual environments for training and testing the simulated and hardware neuromorphic systems. [4]

       To see more background: http://homes.cs.washington.edu/~diorio/Talks/InvitedTalks/Telluride99/


Reference:

[1] Rachmuth, Guy, et al. “A biophysically-based neuromorphic model of spike rate-and timing-dependent plasticity.” Proceedings of the National Academy of Sciences 108.49 (2011): E1266-E1274.

[2] http://en.wikipedia.org/wiki/Neuromorphic_engineering

[3] http://www.artificialbrains.com/darpa-synapse-program

[4] http://en.wikipedia.org/wiki/SyNAPSE


(4):最后呼吁:

       不管怎样都好,如果有一天,AI真的找到合适的程序构建模型,多少人还是希望我们对这个模型的了解能超过我们对于自身的了解。黑箱意味着不可控制,必然导致无法预料的结果,这是所有从事科学职业的人是不想看到的。

       付出多少就能得到多少,付出多少才能得到多少,一劳永逸意味着灭亡。


转载于:https://www.cnblogs.com/wishchin/p/9200320.html

这篇关于深度学习:又一次推动AI梦想(Marr理论、语义鸿沟、视觉神经网络、神经形态学)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/340181

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷