python (PSI)模型分和特征稳定性评估指标

2023-11-03 17:59

本文主要是介绍python (PSI)模型分和特征稳定性评估指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@[TOC](python (PSI)模型分和特征稳定性评估指标)

由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知。稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发样本评分的的分布差异,为最常见的模型稳定度评估指针。其实PSI表示的就是按分数分档后,针对不同样本,或者不同时间的样本,population分布是否有变化,就是看各个分数区间内人数占总人数的占比是否有显著变化。公式如下:
在这里插入图片描述
对一批数据求每月的psi,数据如下:
在这里插入图片描述
我采用的是两个月为基准(以个人实际情况修改代码),等宽分箱成10个区间,去计算每个月的psi,(由于我的需求是不只要把每月的psi求出来,还要求每个区间的样本数,占比以及ln值都要列出来,所以我的代码会相对复杂,仔细看是很简单的,)
代码如下:

def data_month_psi(df,nameks):  # nameks是特征名字## 为了计算psilabels=['c'+str(i) for i in range(10)]# True_out,bins=pd.qcut(df['result'],q=10,retbins=True,labels=labels, duplicates='drop')True_out,bins=pd.cut(df['result'],bins=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],retbins=True, labels=labels)df['True_out'] = True_out# bins[0] = bins[0]-0.001 #cut左开右闭,之前最小值再分组后组记号为空,这里减0.01划到最左侧区间re_total = pd.DataFrame(columns=[ '月份', 'features', '区间', '基准数', '当月数','基准占比', '当月占比', 'sub', 'ln', 'PSI'])for i in range(0, len(df.月份.unique())):# 以前两个月为基准fri_m = df.月份.unique()[0]sce_m = df.月份.unique()[1]m = df.月份.unique()[i]data_ks_last = df.loc[(df['月份'] == fri_m) | (df['月份'] == sce_m),]data_ks = df.loc[df['月份'] == m,]a=pd.DataFrame(data_ks_last.True_out.value_counts()).rename(columns={'True_out':'基准占比'})a=a.applymap(lambda y : y/sum(a.基准占比))b=pd.DataFrame(data_ks.True_out.value_counts()).rename(columns={'True_out':'当月占比'})b=b.applymap(lambda y : y/sum(b.当月占比))re=pd.merge(a,b,left_index=True,right_index=True)re['月份'] = mre['基准数']= data_ks_last.True_out.value_counts()re['当月数'] = data_ks.True_out.value_counts()psi=0ln = []for i in range(len(re)):if re['基准占比'][i]==0:re['基准占比'][i]=0.000001if re['当月占比'][i]==0:re['当月占比'][i]=0.000001l=math.log((re['当月占比'][i]/re['基准占比'][i]))p=((re['当月占比'][i]-re['基准占比'][i])*(math.log((re['当月占比'][i]/re['基准占比'][i]))))ln.append(l)psi=psi+pre['sub'] = re['当月占比']-re['基准占比']re['ln'] = lnre['PSI'] = psire['区间'] = re.indexre['features'] = nameksre = re[[ '月份', 'features', '区间', '基准数', '当月数','基准占比', '当月占比', 'sub', 'ln', 'PSI']].sort_index(by = ["区间"],ascending = [True])re_total = pd.concat([re_total,re])return re_total

最后结果如下:(有些数据处理了所以打码了,怕你们有误解)
在这里插入图片描述
举例:

比如训练一个logistic回归模型,预测时候会有个概率输出p。
测试集上的输出设定为p1吧,将它从小到大排序后10等分,如0-0.1,0.1-0.2,…。
现在用这个模型去对新的样本进行预测,预测结果叫p2,按p1的区间也划分为10等分。
实际占比就是p2上在各区间的用户占比,预期占比就是p1上各区间的用户占比。
意义就是如果模型跟稳定,那么p1和p2上各区间的用户应该是相近的,占比不会变动很大,也就是预测出来的概率不会差距很大。

一般认为PSI小于0.1时候模型稳定性很高,0.1-0.25一般,大于0.25模型稳定性差,建议重做。

PS:除了按概率值大小等距十等分外,还可以对概率排序后按数量十等分,两种方法计算得到的psi可能有所区别但数值相差不大。

本人会持续更新实际业务中经常用到的代码指标(python,sql都会有哦!请持续关注)

这篇关于python (PSI)模型分和特征稳定性评估指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339919

相关文章

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t