python (PSI)模型分和特征稳定性评估指标

2023-11-03 17:59

本文主要是介绍python (PSI)模型分和特征稳定性评估指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@[TOC](python (PSI)模型分和特征稳定性评估指标)

由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知。稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发样本评分的的分布差异,为最常见的模型稳定度评估指针。其实PSI表示的就是按分数分档后,针对不同样本,或者不同时间的样本,population分布是否有变化,就是看各个分数区间内人数占总人数的占比是否有显著变化。公式如下:
在这里插入图片描述
对一批数据求每月的psi,数据如下:
在这里插入图片描述
我采用的是两个月为基准(以个人实际情况修改代码),等宽分箱成10个区间,去计算每个月的psi,(由于我的需求是不只要把每月的psi求出来,还要求每个区间的样本数,占比以及ln值都要列出来,所以我的代码会相对复杂,仔细看是很简单的,)
代码如下:

def data_month_psi(df,nameks):  # nameks是特征名字## 为了计算psilabels=['c'+str(i) for i in range(10)]# True_out,bins=pd.qcut(df['result'],q=10,retbins=True,labels=labels, duplicates='drop')True_out,bins=pd.cut(df['result'],bins=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],retbins=True, labels=labels)df['True_out'] = True_out# bins[0] = bins[0]-0.001 #cut左开右闭,之前最小值再分组后组记号为空,这里减0.01划到最左侧区间re_total = pd.DataFrame(columns=[ '月份', 'features', '区间', '基准数', '当月数','基准占比', '当月占比', 'sub', 'ln', 'PSI'])for i in range(0, len(df.月份.unique())):# 以前两个月为基准fri_m = df.月份.unique()[0]sce_m = df.月份.unique()[1]m = df.月份.unique()[i]data_ks_last = df.loc[(df['月份'] == fri_m) | (df['月份'] == sce_m),]data_ks = df.loc[df['月份'] == m,]a=pd.DataFrame(data_ks_last.True_out.value_counts()).rename(columns={'True_out':'基准占比'})a=a.applymap(lambda y : y/sum(a.基准占比))b=pd.DataFrame(data_ks.True_out.value_counts()).rename(columns={'True_out':'当月占比'})b=b.applymap(lambda y : y/sum(b.当月占比))re=pd.merge(a,b,left_index=True,right_index=True)re['月份'] = mre['基准数']= data_ks_last.True_out.value_counts()re['当月数'] = data_ks.True_out.value_counts()psi=0ln = []for i in range(len(re)):if re['基准占比'][i]==0:re['基准占比'][i]=0.000001if re['当月占比'][i]==0:re['当月占比'][i]=0.000001l=math.log((re['当月占比'][i]/re['基准占比'][i]))p=((re['当月占比'][i]-re['基准占比'][i])*(math.log((re['当月占比'][i]/re['基准占比'][i]))))ln.append(l)psi=psi+pre['sub'] = re['当月占比']-re['基准占比']re['ln'] = lnre['PSI'] = psire['区间'] = re.indexre['features'] = nameksre = re[[ '月份', 'features', '区间', '基准数', '当月数','基准占比', '当月占比', 'sub', 'ln', 'PSI']].sort_index(by = ["区间"],ascending = [True])re_total = pd.concat([re_total,re])return re_total

最后结果如下:(有些数据处理了所以打码了,怕你们有误解)
在这里插入图片描述
举例:

比如训练一个logistic回归模型,预测时候会有个概率输出p。
测试集上的输出设定为p1吧,将它从小到大排序后10等分,如0-0.1,0.1-0.2,…。
现在用这个模型去对新的样本进行预测,预测结果叫p2,按p1的区间也划分为10等分。
实际占比就是p2上在各区间的用户占比,预期占比就是p1上各区间的用户占比。
意义就是如果模型跟稳定,那么p1和p2上各区间的用户应该是相近的,占比不会变动很大,也就是预测出来的概率不会差距很大。

一般认为PSI小于0.1时候模型稳定性很高,0.1-0.25一般,大于0.25模型稳定性差,建议重做。

PS:除了按概率值大小等距十等分外,还可以对概率排序后按数量十等分,两种方法计算得到的psi可能有所区别但数值相差不大。

本人会持续更新实际业务中经常用到的代码指标(python,sql都会有哦!请持续关注)

这篇关于python (PSI)模型分和特征稳定性评估指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339919

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言