python (PSI)模型分和特征稳定性评估指标

2023-11-03 17:59

本文主要是介绍python (PSI)模型分和特征稳定性评估指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@[TOC](python (PSI)模型分和特征稳定性评估指标)

由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知。稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发样本评分的的分布差异,为最常见的模型稳定度评估指针。其实PSI表示的就是按分数分档后,针对不同样本,或者不同时间的样本,population分布是否有变化,就是看各个分数区间内人数占总人数的占比是否有显著变化。公式如下:
在这里插入图片描述
对一批数据求每月的psi,数据如下:
在这里插入图片描述
我采用的是两个月为基准(以个人实际情况修改代码),等宽分箱成10个区间,去计算每个月的psi,(由于我的需求是不只要把每月的psi求出来,还要求每个区间的样本数,占比以及ln值都要列出来,所以我的代码会相对复杂,仔细看是很简单的,)
代码如下:

def data_month_psi(df,nameks):  # nameks是特征名字## 为了计算psilabels=['c'+str(i) for i in range(10)]# True_out,bins=pd.qcut(df['result'],q=10,retbins=True,labels=labels, duplicates='drop')True_out,bins=pd.cut(df['result'],bins=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],retbins=True, labels=labels)df['True_out'] = True_out# bins[0] = bins[0]-0.001 #cut左开右闭,之前最小值再分组后组记号为空,这里减0.01划到最左侧区间re_total = pd.DataFrame(columns=[ '月份', 'features', '区间', '基准数', '当月数','基准占比', '当月占比', 'sub', 'ln', 'PSI'])for i in range(0, len(df.月份.unique())):# 以前两个月为基准fri_m = df.月份.unique()[0]sce_m = df.月份.unique()[1]m = df.月份.unique()[i]data_ks_last = df.loc[(df['月份'] == fri_m) | (df['月份'] == sce_m),]data_ks = df.loc[df['月份'] == m,]a=pd.DataFrame(data_ks_last.True_out.value_counts()).rename(columns={'True_out':'基准占比'})a=a.applymap(lambda y : y/sum(a.基准占比))b=pd.DataFrame(data_ks.True_out.value_counts()).rename(columns={'True_out':'当月占比'})b=b.applymap(lambda y : y/sum(b.当月占比))re=pd.merge(a,b,left_index=True,right_index=True)re['月份'] = mre['基准数']= data_ks_last.True_out.value_counts()re['当月数'] = data_ks.True_out.value_counts()psi=0ln = []for i in range(len(re)):if re['基准占比'][i]==0:re['基准占比'][i]=0.000001if re['当月占比'][i]==0:re['当月占比'][i]=0.000001l=math.log((re['当月占比'][i]/re['基准占比'][i]))p=((re['当月占比'][i]-re['基准占比'][i])*(math.log((re['当月占比'][i]/re['基准占比'][i]))))ln.append(l)psi=psi+pre['sub'] = re['当月占比']-re['基准占比']re['ln'] = lnre['PSI'] = psire['区间'] = re.indexre['features'] = nameksre = re[[ '月份', 'features', '区间', '基准数', '当月数','基准占比', '当月占比', 'sub', 'ln', 'PSI']].sort_index(by = ["区间"],ascending = [True])re_total = pd.concat([re_total,re])return re_total

最后结果如下:(有些数据处理了所以打码了,怕你们有误解)
在这里插入图片描述
举例:

比如训练一个logistic回归模型,预测时候会有个概率输出p。
测试集上的输出设定为p1吧,将它从小到大排序后10等分,如0-0.1,0.1-0.2,…。
现在用这个模型去对新的样本进行预测,预测结果叫p2,按p1的区间也划分为10等分。
实际占比就是p2上在各区间的用户占比,预期占比就是p1上各区间的用户占比。
意义就是如果模型跟稳定,那么p1和p2上各区间的用户应该是相近的,占比不会变动很大,也就是预测出来的概率不会差距很大。

一般认为PSI小于0.1时候模型稳定性很高,0.1-0.25一般,大于0.25模型稳定性差,建议重做。

PS:除了按概率值大小等距十等分外,还可以对概率排序后按数量十等分,两种方法计算得到的psi可能有所区别但数值相差不大。

本人会持续更新实际业务中经常用到的代码指标(python,sql都会有哦!请持续关注)

这篇关于python (PSI)模型分和特征稳定性评估指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339919

相关文章

Python批量调整Word文档中的字体、段落间距及格式

《Python批量调整Word文档中的字体、段落间距及格式》这篇文章主要为大家详细介绍了如何使用Python的docx库来批量处理Word文档,包括设置首行缩进、字体、字号、行间距、段落对齐方式等,需... 目录关键代码一级标题设置  正文设置完整代码运行结果最近关于批处理格式的问题我查了很多资料,但是都没

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用