金融量化分析【day112】:均值回归策略

2023-11-03 15:59

本文主要是介绍金融量化分析【day112】:均值回归策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、均值回归策略

1、什么是回归策略

 二、归一标准化

import numpy as np
a = np.random.uniform(100,5000,1000)
b = np.random.uniform(0.1,3.0,1000)
(a.min(),a.max())

  输出

预处理

(a - a.min())/(a.max()-a.min())

  输出

预处理

aa = (a - a.min())/(a.max()-a.min())
bb = (b - b.min())/(b.max()-b.min())
(aa.min(),aa.max())

  输出

画图

aaa = (a - a.mean())/a.std()
import matplotlib.pyplot as plt
%matplotlib
plt.hist(aaa)

输出

二、均值回归策略代码

# 导入函数库
import jqdata
import math
import numpy as np
import pandas as pd def initialize(context):set_benchmark('000002.XSHG')set_option('use_real_price', True)set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')g.security = get_index_stocks('000002.XSHG')g.ma_days = 30 g.stock_num = 10  run_monthly(handle, 1)def handle(context):sr = pd.Series(index=g.security)for stack in sr.index:ma = attribute_history(stack,g.stock_days)['close'].meanp = get_current_data()[stack].day_openratio = (ma-p)/masr[stock] = ratiotohold = sr.nlarges(g.stock_num).index.valuesfor stock in context.portfolio/positions:if stock not in tohold:order_target_value(stock, 0)tobuy = [stock for stock in tohold if stock not in context.portfolio.positions]if len(tobuy)>0:cash = context.portfolio.available_cashcash_every_stock = cash / len(tobuy)for stock in tobuy:order_value(stock,cash_every_stock)

  

转载于:https://www.cnblogs.com/luoahong/p/9857839.html

这篇关于金融量化分析【day112】:均值回归策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/339298

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

SpringBoot中的404错误:原因、影响及解决策略

《SpringBoot中的404错误:原因、影响及解决策略》本文详细介绍了SpringBoot中404错误的出现原因、影响以及处理策略,404错误常见于URL路径错误、控制器配置问题、静态资源配置错误... 目录Spring Boot中的404错误:原因、影响及处理策略404错误的出现原因1. URL路径错

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维