诺亚幻想抽卡——玩家控制概率的抽卡系统

2023-11-03 02:40

本文主要是介绍诺亚幻想抽卡——玩家控制概率的抽卡系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

玩家控制概率?

和传统的抽卡方式消耗单一资源(钻石,金币,十连抽礼券)不同,《诺亚幻想》的抽卡,是需要消耗多种资源,每一种资源玩家都可以配置相应的数值,相当于在真正的抽卡逻辑之前,进行了策划的配置权重的工作,相应的,配置好数值之后,对于所有英雄抽卡获得的概率都会改变。这种抽卡被玩家称之为诺亚幻想大建,每个英雄对应的最佳的各种资源的数值被称之为大建公式,从最终的抽卡体验来看,很多玩家都觉得这是谜一样的抽卡。到底内部逻辑是怎样的呢?
先来看一张大建的图:
在这里插入图片描述

金黑翠苍赤五种曜石,在大建时每一种曜石的数量最少设置50,最高999。那么一共有950的5次方,也就是773780937500000种大建公式。为每一个公式都准备一个抽取的库显然是不可能的。实际上,总共只有20个库,由5种曜石和4种cost(学员分为cost5,6,7,9这4种)组合而成。玩家准备的公式,决定了分库随机中,20个库分别可以随机到的概率。如果理解了随机的概率算法,玩家就可以通过配置建造公式,真正增加随出某个库(比如cost9水(苍)属性库)的概率。那么这20个概率是怎样确定的呢?

库概率计算

首先,我们来理解一个概念,叫做权重函数,用于计算最终的特定库的权重。设x1,x2,x3,x4,x5分别对应五种曜石数量,S为输入的曜石总数。
总权重函数为:
W i , k = H i C k (i对应5种曜石, k对应4种cost) \tag*{(i对应5种曜石, k对应4种cost)} W_{i,k} = H_iC_k Wi,k=HiCk(i对应5种曜石, k对应4cost)
曜石权重函数:
H i = x i 3 x 1 3 + x 2 3 + x 3 3 + x 4 3 + x 5 3 x为曜石数量 \tag*{x为曜石数量} H_i = \cfrac{x_i^3}{x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3} Hi=x13+x23+x33+x43+x53xi3x为曜石数量
曜石总数权重函数:
C k = a k e x p − ( S − b k ) 2 2 c k 2 , S = x 1 + x 2 + x 3 + x 4 + x 5 a,b,c为常数 \tag*{a,b,c为常数} C_k = a_kexp^\cfrac{-(S - b_k)^2}{2c_k^2}, S = x_1 + x_2 + x_3 + x_4 + x_5 Ck=akexp2ck2(Sbk)2S=x1+x2+x3+x4+x5a,b,c为常数
由上述公式,我们可以得出以下结论:

  1. 总权重由曜石权重函数和总数权重函数共同决定,要想最大程度提高特定库的概率,我们需要同时提高两个权重函数的值。
  2. 对于曜石权重函数来说,特定的曜石数量越多,其它种类曜石数量越少,并且其它曜石数量越平均,那么随机到这种曜石对应的库的几率越大。举例说明:如果想提高水属性学员概率,那么水曜石尽可能的放多,其它的尽可能放少。
  3. 对于曜石总数权重函数,我们放入的曜石总数越接近b的值,那么对应的cost的库权重越大。因为这是一个正态分布函数。两边同时求对数可以得到:
    ln ⁡ C k = ln ⁡ a k − ( S − b k ) 2 2 c k 2 \ln C_k = \ln a_k - \cfrac{(S - b_k)^2}{2c_k^2} lnCk=lnak2ck2(Sbk)2
    如果S的值与b相等,那么最终权重为a。
  4. 总结来说,想要最大化某个库的概率,需要 其对应种类的曜石数量越多,总曜石越近b的值。

那么b的值是多少呢?

costbac
cost5学员库2501.51229.2
cost6学员库245011350
cost7学员库39001.11520
cost9学员库440011063.3

那么问题来了,两个权重函数可能相互冲突,你能取最大值,我就不能,怎样确定最终的最大概率的数值呢?
由于关键的曜石数量需要最大,其它曜石可以算作平均值处理,并把曜石总数也作为一个变量y,所以权重函数做如下变化。
W x , y = a x 3 x 3 + 4 ( y − x 4 ) 3 e x p − ( y − b ) 2 2 c 2 y为总曜石数量 \tag*{y为总曜石数量} W_{x,y} = a\cfrac{x^3}{x^3 + 4(\cfrac{y - x}{4})^3}exp^\cfrac{-(y - b)^2}{2c^2} Wx,y=ax3+4(4yx)3x3exp2c2(yb)2y为总曜石数量
这就演变为一个求二元函数极大值问题。并且限定为:
x ∈ [ 50 , 999 ) , y ⩾ x + 200 , y ⩽ 5 x x \in [50,999) , y\geqslant x + 200, y \leqslant 5x x[50,999),yx+200,y5x
有数学大佬可以帮忙算一下吗?
咱们还是写程序算出来最大概率的公式吧。

local config = {-- 学员单一库配置static_drop_libs = {light = {[5] = 200001,[6] = 200002,[7] = 200003,[9] = 200004},dark = {[5] = 200005,[6] = 200006,[7] = 200007,[9] = 200008},wind = {[5] = 200009,[6] = 200010,[7] = 200011,[9] = 200012},water = {[5] = 200013,[6] = 200014,[7] = 200015,[9] = 200016},fire = {[5] = 200017,[6] = 200018,[7] = 200019,[9] = 200020}},-- 学员 Cost 的正态函数参数cost_normal_functions = {[5] = {a = 1.5,b = 250,c = 1229.2},[6] = {a = 1,b = 2450,c = 1350},[7] = {a = 1.1,b = 3900,c = 1520},[9] = {a = 1,b = 4400,c = 1063.3}}
}local ELEM_FIELDS =  {[1] = "light",[2] = "dark",[3] = "wind",[4] = "water",[5] = "fire"
}local function get_formulaes(req)local elem_weights = {}local elem_target = 0local elem_sumcubic = 0for elem_id, elem_field in pairs(ELEM_FIELDS) dolocal v = req[elem_field]local cubic = v * v * velem_weights[elem_id] = cubicelem_sumcubic = elem_sumcubic + cubicelem_target = elem_target + vendfor k, v in pairs(elem_weights) doelem_weights[k] = v / elem_sumcubic -- 权重为 各自的立方 除以 立方和endlocal cost_weight_sum = 0local cost_weights = {}for c, n in pairs(config.cost_normal_functions) dolocal distance = elem_target - n.blocal cw = n.a * math.exp(- distance * distance / 2 / n.c / n.c)cost_weights[c] = cwcost_weight_sum = cost_weight_sum + cwendfor k, v in pairs(cost_weights) docost_weights[k] = v / cost_weight_sumendlocal formulaes = {}for elem_id, elem_name in pairs(ELEM_FIELDS) dolocal ew = elem_weights[elem_id]local elem_drop_libs = assert(config.static_drop_libs[elem_name])for c, cw in pairs(cost_weights) dolocal drop_id = elem_drop_libs[c]if drop_id thenlocal weight = ew * cwtable.insert(formulaes, {dropId = drop_id,weight = weight})endendendreturn formulaes
endlocal function check_prob(drop_target, current, other)local result = get_formulaes({light=other, dark = other, wind = other, water = current, fire = other})-- local drop_target = 200013local target_weight = 0local sum = 0for _, drop in pairs(result) doif drop.dropId == drop_target thentarget_weight = drop.weightendsum = sum + drop.weightendif target_weight ~= 0 thenlocal prob = target_weight / sum-- print(prob)return probendreturn 0
endlocal bbb = {[5] = 250,[6] = 2450,[7] = 3900,[9] = 4400
}local from = 50
local to = 999
local interval = 1
local max = 0
local bingo = nil
local bingoOther = nil
for index, target in pairs(config.static_drop_libs.water) dolocal total = bbb[index]for i = from,to,interval dolocal totalMin = total * 0.8local totalMax = total * 1.2if totalMin < 250 thentotalMin = 250endif totalMax > 4996 thentotalMax = 4996endfor j = totalMin,totalMax,interval dolocal other = math.floor((j - i)/4)if other < 50 thenother = 50elseif other > 999 thenother = 999endlocal result = check_prob(target, i, other)if result > max thenmax = resultbingo = ibingoOther = otherendendendprint(index,"bingo:",bingo,"prob:",max,"other:",bingoOther)bingo = nilmax = 0bingoOther = nil
end

运行结果:

9       bingo:  999     prob:   0.13988862461048        other:  666
5       bingo:  265     prob:   0.75589757110106        other:  50
6       bingo:  999     prob:   0.42954544628168        other:  246
7       bingo:  999     prob:   0.24826871710409        other:  530

可以得出以下结论:
cost9水属性库,大建公式为, 水曜石999,其它曜石666,概率为13.98%
cost7水属性库,大建公式为, 水曜石999,其它曜石530,概率为24.83%
cost6水属性库,大建公式为, 水曜石999,其它曜石246,概率为42.95%
cost5水属性库,大建公式为, 水曜石265,其它曜石50,概率为75.6%,。

总结

cost越高的学员,越难抽取。

这篇关于诺亚幻想抽卡——玩家控制概率的抽卡系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/335033

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识