sklearn:特征与树木森林的重要性

2023-11-02 21:50

本文主要是介绍sklearn:特征与树木森林的重要性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个例子展示了使用树木森林来评估特征对人工分类任务的重要性。 红色条是森林的特征重要性,以及它们的树间变异性。

正如预期的那样,该情节表明3个特征是提供信息的,而其余的则没有。

import numpy as np
import matplotlib.pyplot as pltfrom sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,n_features=10,n_informative=3,n_redundant=0,n_repeated=0,n_classes=2,random_state=0,shuffle=False)# Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250,random_state=0)forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],axis=0)
indices = np.argsort(importances)[::-1]# Print the feature ranking
print("Feature ranking:")for f in range(X.shape[1]):print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))# Plot the feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()

Feature ranking:
1. feature 1 (0.295902)
2. feature 2 (0.208351)
3. feature 0 (0.177632)
4. feature 3 (0.047121)
5. feature 6 (0.046303)
6. feature 8 (0.046013)
7. feature 7 (0.045575)
8. feature 4 (0.044614)
9. feature 9 (0.044577)
10. feature 5 (0.043912)

这篇关于sklearn:特征与树木森林的重要性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/333542

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

可测试,可维护,可移植:上位机软件分层设计的重要性

互联网中,软件工程师岗位会分前端工程师,后端工程师。这是由于互联网软件规模庞大,从业人员众多。前后端分别根据各自需求发展不一样的技术栈。那么上位机软件呢?它规模小,通常一个人就能开发一个项目。它还有必要分前后端吗? 有必要。本文从三个方面论述。分别是可测试,可维护,可移植。 可测试 软件黑盒测试更普遍,但很难覆盖所有应用场景。于是有了接口测试、模块化测试以及单元测试。都是通过降低测试对象

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重

WebShell流量特征检测_哥斯拉篇

90后用菜刀,95后用蚁剑,00后用冰蝎和哥斯拉,以phpshell连接为例,本文主要是对后三款经典的webshell管理工具进行流量分析和检测。 什么是一句话木马? 1、定义 顾名思义就是执行恶意指令的木马,通过技术手段上传到指定服务器并可以正常访问,将我们需要服务器执行的命令上传并执行 2、特点 短小精悍,功能强大,隐蔽性非常好 3、举例 php一句话木马用php语言编写的,运行

DTO类实现Serializable接口的重要性

所谓序列化,简单一点理解,就是将对象转换成字节数组,反序列化是将字节数组恢复为对象。凡是要在网络上传输的对象、要写入文件的对象、要保存到数据库中的对象都要进行序列化。Java对象是无法直接保存到文件中,或是存入数据库中的。如果要保存到文件中,或是存入数据库中,就要将对象序列化,即转换为字节数组才能保存到文件中或是数据库中。文件或者数据库中的字节数组拿出来之后要转换为对象才能被我们识别,即反序列化。

HDU2523(论scanf的重要性)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2523 解题思路: 先把a数组排个序,然后把| xi - xj |的所有组合值求出来,把b数组在排个序。这时候要考虑出现1、1、1、2、2、3这种相邻两个一样的情况,开一个vis标记数组把相邻的数进行合并,这样就可以顺利取到第k大的值。 特别说明,论scanf和printf的重要性,用cin

图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取

图结构在多个领域中扮演着重要角色,它能有效地模拟实体间的连接关系,通过从图中提取有意义的特征,可以获得宝贵的信息提升机器学习算法的性能。 本文将介绍如何利用NetworkX在不同层面(节点、边和整体图)提取重要的图特征。 本文将以NetworkX库中提供的Zachary网络作为示例。这个广为人知的数据集代表了一个大学空手道俱乐部的社交网络,是理解图特征提取的理想起点。 我们先定义一些辅助函数