18.自监督视觉`transformer`模型DINO

2023-11-02 15:01

本文主要是介绍18.自监督视觉`transformer`模型DINO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 自监督视觉`transformer`模型DINO
    • 总体介绍
    • DINO中使用的SSL和KD方法
    • multicrop strategy
    • 损失函数定义
    • `teacher`输出的中心化与锐化
    • 模型总体结构及应用
      • reference


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


自监督视觉transformer模型DINO

总体介绍

论文:1.Emerging Properties in Self-Supervised Vision Transformers

这篇文章旨在探索自监督训练有没有给视觉transformer带来相对于CNN没有的新特性。

除了观测到自监督训练ViT工作特别好外,作者还有两个新发现,一个是自监督训练得到的特征图包含明显的语义信息,有可能将自监督的结果直接拿来做语义分割和目标检测,另外一个是直接拿自监督得到的特征向量应用KNN分类,得到了非常好的效果。ps:本人在工程数据(20W张)上验证的直接使用KNN分类的效果比efficient-net还好。

正如DINO的名字缩写,这整个算法使用了知识蒸馏的架构,通过一个teacher网络引导student的学习,使用损失值计算的梯度更新student模型的参数,而teacher模型的参数使用的是student模型参数的指数移动平均值,和BYOL的方法有些相似。除了知识蒸馏,作者还强调了对输入进行RandomResizeCroptransformer使用小patch_size的重要性。同时,DINO需要对teacher的输出进行中心化和锐化centering and sharpening,否则模型训练会不稳定,甚至崩溃(collapse)。DINO使用的studentteacher且训练过程中相互促进学习,也属于共蒸馏codistillation模型。

知识蒸馏的概念是一个学生网络student表示为 g θ s g\theta_s gθs学习匹配一个教师网络teacher表示为 g θ t g\theta_t gθt的输出,通过teacher引导student的训练。

假如给定一个输入图像 x x x,网络对应的输出是 K K K维的概率分布 P P P(类似于有K个类别的分类),studentteacher对应的输出概率分别为P_sP_t

在计算student输出概率的时候使用的是带 τ s \tau_s τs温度系数的softmax方法,在DINO中默认的 τ s = 0.1 \tau_s=0.1 τs=0.1,目的在于增大输出的相对熵,促进类别之间相似度的区分,在计算teacher输出的概率时同样使用了 τ t = 0.9 \tau_t=0.9 τt=0.9

P s ( x ) ( i ) = e x p ( g θ s ( x ) ( i ) / τ s ) ∑ k = 1 K e x p ( g θ s ( x ) ( k ) / τ s ) P_s(x)^(i)=\frac{exp(g\theta_s(x)^{(i)}/\tau_s)}{\sum\limits_{k=1}^{K}exp(g\theta_s(x)^{(k)}/\tau_s)} Ps(x)(i)=k=1Kexp(g

这篇关于18.自监督视觉`transformer`模型DINO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/331421

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言