SHAP算法在营销增益模型中的尝试

2023-11-02 10:12

本文主要是介绍SHAP算法在营销增益模型中的尝试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SHAP算法

Shap算法,全称SHapley Additive exPlanations,即沙普利加和解释。它的核心思想是将输出值归因到每一个特征的shapley值上,以此来量化衡量特征对最终输出值的影响。这个算法是由华盛顿大学的研究者开发并开源的,因此被命名为SHAP。

作为Python开发的"模型解释"包,SHAP可以解释任何机器学习模型的输出。其理论基础来源于合作博弈论,构建了一个加性的解释模型,所有的特征都被视为“贡献者”。

在实际应用中,SHAP将模型的预测值解释为每个输入特征的归因值之和,其中归因值就是shap values。这种归因值法能够让我们深入理解各个特征对于模型预测结果的贡献程度,进而帮助我们进行更准确的模型预测和分析。

营销增益模型uplift

营销增益模型,也被称为Uplift模型,是一种用于预测干预动作(treatment)对用户响应行为(outcome)产生的效果的模型。它的核心目标是估算同一个体在干预与不干预(互斥情况下)不同响应的差异,即个体干预增量(ITE,Individual Treatment Effect)。

与传统的预测模型不同,Uplift模型关注的是用户被干预后的行为或态度变化的增量。例如,在广告推送的场景中,传统模型可能只能告诉我们用户在看到广告后的购买意愿很强,但Uplift模型可以进一步分析出这种购买意愿的提升中,有多少是因为看到了广告——也就是我们常说的"uplift"部分。有了这样的信息,商家就可以更有针对性地进行营销推广,从而提高广告的转化率和ROI。

营销增益模型种类:

根据建模方法和数据使用的不同,主要可以分为以下几类:

1. Two-Model(双模型):这种方法建立了两个对于结果的预测模型,一个使用实验组数据,另一个使用对照组数据。

2. One-Model(单模型):这类方法直接对uplift进行建模,不需要预先建立对结果的预测模型。

3. Class Variable Transformation(类别变量转换):当响应结果为二元变量时可以使用这种方法。

SHAP+Uplift

在营销增益模型中,Shap算法主要被用来解析和评估各个特征对预测结果的贡献度。例如,它可以帮助我们理解哪些用户行为或消费习惯等因素对用户的购买决策产生了最大的影响。通过这样的分析,我们可以更精准地进行目标用户的识别,以及设计针对性的营销策略。在营销增益模型种类中,SHAP属于One-Model单模型类别,他的好处是把干预动作也作为一个X变量放入模型中进行训练。最终通过SHAP取解析干预动作变量的影响增益情况。

因此,Shap算法对于构建以用户行为数据为基础的营销增益模型具有巨大的帮助,它能够提供深入到每个特征的影响力分析,从而为决策者提供有价值的洞见。

下面我们利用python创建了仿真数据进行展示SHAP的应用:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, roc_auc_score
import shap# 生成模拟数据
np.random.seed(42)
X = np.random.randn(1000, 10)
y = (X[:, 0] + X[:, 1] > 0).astype(int)
treatment = np.random.choice([0, 1], size=len(y), p=[0.5, 0.5])
data = pd.DataFrame(X, columns=[f'feature_{i}' for i in range(1, 11)])
data['outcome'] = y
data['treatment'] = treatment# 划分训练集和测试集
X_train, X_test, y_train, y_test, treatment_train, treatment_test = train_test_split(data[['feature_1', 'feature_2', 'feature_3', 'feature_4', 'feature_5', 'feature_6', 'feature_7', 'feature_8', 'feature_9', 'feature_10']],data['outcome'],data['treatment'],test_size=0.2,random_state=42
)# 训练随机森林模型
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)# 预测概率
y_pred_proba = rf.predict_proba(X_test)[:, 1]# 计算uplift
uplift = y_pred_proba[treatment_test == 1] - y_pred_proba[treatment_test == 0]# 使用SHAP解释模型
explainer = shap.TreeExplainer(rf)
shap_values = explainer.shap_values(X_test)# 计算SHAP值的差分响应
shap_diff = shap_values[1][treatment_test == 1] - shap_values[0][treatment_test == 0]# 输出结果
print("Uplift:", uplift)
print("SHAP Difference Response:", shap_diff)

这篇关于SHAP算法在营销增益模型中的尝试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/329899

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为