2022最新版-李宏毅机器学习深度学习课程-P32 Transformer

2023-11-02 07:30

本文主要是介绍2022最新版-李宏毅机器学习深度学习课程-P32 Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 seq2seq

 1. 含义

输入一个序列,机器输出另一个序列,输出序列长度由机器决定。

  • 文本翻译:文本至文本;  
  • 语音识别:语音至文本;  
  • 语音合成:文本至语音;  
  • 聊天机器人:语音至语音。

2. 应用

自然语言处理(NLP问题),不过seq2seq有时候不一定是最佳的解决方法。

语音辨识

输入是声音讯号的一串的vector,输出是语音辨识的结果,也就是输出的这段声音讯号,所对应的文字⇒输出的长度由机器自己决定

机器翻译

机器读一个语言的句子,输出另外一个语言的句子,

输入的文字的长度是N,输出的句子的长度是N',那N跟N'之间的关系,也要由机器自己来决定

语音翻译

把他听到的英文的声音讯号翻译成中文文字

(动机:世界上有很多语言,他根本连文字都没有,不能用1.+2.串接)

训练数据:乡土剧语音+字幕

新词:硬train一发

语音合成Text-to-Speech (TTS) Synthesis

输入文字 输出声音讯号

Chatbot

输入输出都是文字

利用人的对话进行训练

Question Answering (QA)

很多natural language processing的任务,都可以想成是question answering,QA的任务。QA的问题,就可以用Seq2Seq model来解

⇒具体来说,Seq2Seq model输入的就是有问题跟文章把它接在一起,输出就是问题的答案

⇒输入一个文字序列→输出一个文字序列

  • 翻译
  • 摘要
  • 情感分析

▶️对多数NLP的任务,或对多数的语音相关的任务而言,往往為这些任务特制化模型,你会得到更好的结果

https://speech.ee.ntu.edu.tw/~hylee/dlhlp/2020-spring.html

Syntactic Parsing句法分析(文法剖析)

grammar as a Foreign Language

例如,给机器一段文字,Deep learning is very powerful,机器要做的事情是产生一个文法的剖析树 。

输出结果(剖析树)告诉我们,deep 加 learning 合起来是一个名词短语,very 加 powerful 合起来是一个形容词短语,形容词短语加 is 以后会变成一个动词短语,动词短语加名词片语合起来是一个句子

文法剖析要做的事情就是产生这样子的一个 Syntactic tree,所以在用 deep learning 解决 文法剖析的任务里面,输入是一段文字(一个Sequence),输出是一个树状的结构,(可以把他看作是一个Sequence,一个代表句法分析树的序列)

multi-label classification

(多标签分类问题:同一个对象可以属于多个class

区分:

  • multi-class classification:为样本从数个 class 中选择某一个 class(多对一)
  • multi-label classification:同一个样本可以属于多个 class (一对多)

难点:每篇文章对应几个 class 不好确定 ⇒ seq2seq 决定要输出几个

Object Detection 物体检测

图像识别领域

3.  Seq2seq 实现方式

seq2seq's model = Encoder(编码器) + Decoder(解码器)

这两部分可以使用RNN或transformer实现,seq2seq主要是为了解决输入和输出长度不确定的情况。

Encoder:将输入(文字、语音、视频等)编码为单个向量,这个向量可以看成是全部输入的 抽象表示

Decoder:接受 encoder 输出的向量,逐步解码,一次输出一个结果,每次输出会影响下一次的输出,开头加入 <BOS> 表示开始解码, <EOS> 表示输出结束。

①   Encoder

用途:输入一排向量(序列),输出另外一排同样长度的向量(序列)

可以使用:Self-attention,RNN,CNN

 A、encoder 就是通过多层 block(模块),将输入转换成向量。每一个 block 都包含若干层( self-attention 和 fully connect 等网络结构 ),每个 block 输入一排向量,输出相同数量的一排向量。

B、block 的内部细节构成如下(在 input 送入 block 之前,需先进行 positional encoding,这个知识点在 self - attention 中有提过)。

C 、 它考虑所有输入向量后的输出向量,其中 b 是原来的 input 向量,经过残差网络(residual connection:把 a vector 加上它的 b  input  vector 作为 output )和标准化后,送到全连接神经网络 FC ,由于在 FC network 中也有 residual 的架构,因此需要再经过一组 残差网络 + 标准化 后得到输出。(注意:这里的标准化是 layer normalization 而不是 batch normalization)。这个输出才是 residual network 里一个 block 的输出。

batch normalization:对 不同的 example 不同 feature 的 同一个 dimention 去计算平均值 mean 和标准差 standard deviation。
layer normalization:对 同一个 example  同一个 feature的 不同 dimention 去计算平均值 mean 和标准差 standard deviation。
To Learn more

1.transformer的encoder变式

如:Residual与Normalization的顺序调换

2.为什么是layer Norm:Power Norm

Power Norm:Rethinking Batch Normalization In Transformers,

https://arxiv.org/abs/2003.07845

 ②  Decoder

decoder主要有两种:AT(autoregressive)与 NAT(non-autoregressive),Decoder 要做的事情:产生最终的输出结果

A、autoregressive(AT)decoder :以语音辨识为例

1. 向 Decoder 输入 Encoder 产生的向量

2. 在 Decoder 可能产生的文字库里多加一个标识字符 BEGIN ,它代表 “ Decoder 开始识别” 来提醒机器(BOS: begin of sentence)

NLP 的问题中,每一个 Token 用一个 One-Hot 的 Vector 来表示,其中正确的类别标识是 1,其他都是 0,其中 BEGIN 也是用 One-Hot Vector 来表示

3. 经过 softmax 之后,Decoder 会输出一个和 输入的 Vocabulary Size 一样的向量长度的 向量结果。对比已知文字库,找到相似度最高的字符就是最终输出的字符。(这里“机”字 就是这个 Decoder 的第一个输出)

Vocabulary Size:取决于你输出的单位。比如输出中文,则size是中文方块字的数目。

4. 再把上一步的输出当做下一个的输入。(在本例中,第二次 Decoder 把 “机” 当做是 Decoder 的 Input,在上一步 “机” 是 Decoder 的输出结果)经过一系列相同的操作后我们会得到第二次 Decoder 的输出,再作为第三次的输入,继续输出后续的文字,以此类推……

 5.  机器自己决定输出的长度:一个特别的标识符 ”END” 代表工作结束

 总结: 除了中间的部分,Encoder 跟 Decoder 并没有太大的差别。最后我们可以再做一个 Softmax,可以通过计算输出的概率分布与 Ground Truth 之间的 交叉熵(Cross Entropy)并求梯度实现优化,交叉熵的值越小越好。

 缺点:如果Decoder 看到错误的输入,让 Decoder 产生错误的输出并被代入到下一步 Decoder 工作的输入中,会会造成 Error Propagation(一步错,步步错)⇒  解决:Teacher Forcing技术 (但是测试的时候 显然没有正确答案可以给 Decoder 看)

由于 Teacher Forcing的存在,训练跟测试的情景不一致。Decoder 在训练的时候永远只看过正确的东西,但是在测试的时候,仍然会导致一步错、步步错。

解决:给 Decoder 的输入加一些错误的东西  ⇒ Scheduled Sampling(但是也会一定程度损害平行化的能力)

B、Non-autoregressive (NAT) decoder

 ① 特点:NAT 不是依次有序进行 decoder 工作并挨个输出,而是一次性在输入时赋予 整个句子 一整排的 “ BEGIN ” 标识,把整个句子的 decoder 结果一次性都输出

 ② 思路:如何确定BEGIN的个数:

  1. 另外训练一个 Classifier,输入 Encoder 的 Input vector,输出是一个数字(代表 Decoder 应该要输出的长度)
  2. 给它若干个 BEGIN 的 Token,比如输出句子的最大长度不超过 300,就给 input  300 个 BEGIN token,然后就会相应地一次性输出 300 个字(遇到有输出 END 时表示这个句子输出结束),但是可能会比较耗费内存空间

③ 好处:

  1. 并行化。NAT 的 Decoder 不管 input 句子的长度大小,都是一次性输出完整的句子结果,所以在执行速度上 NAT 的 Decoder 比 AT 的 Decoder 要快
  2. 容易控制输出长度。

④ 应用

 常用在语音合成,例如:利用其中一个 决定 NAT 的 Decoder 应该输出的长度的 Classifier,我们可以通过设置这个输出长度的大小以调整语音的速度。(如果要让输出的语音讲快一点,就把 Classifier 输出的长度数值 除以 N,它讲话速度就变成 N 倍速;同理,如果想要合成的语音变为慢速,就把 Classifier 输出的长度数值乘 N 倍)

⑤ 缺点:虽然 NAT 看起来有很多优点(尤其是并行化),但是 NAT 的 Decoder 实际上 Performance 往往都不如 AT 的 Decoder。为什么NAT 没有 AT 实际效果好  ⇒ Multi-Modality   参考链接

这篇关于2022最新版-李宏毅机器学习深度学习课程-P32 Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329065

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件