推荐算法-矩阵分解(Matrix Factorization,MF)

2023-11-01 23:59

本文主要是介绍推荐算法-矩阵分解(Matrix Factorization,MF),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

常用的推荐算法

在这里插入图片描述
基于协同过滤的推荐算法是主流思想之一;
基于模型与基于领域的推荐算法之间的区别为:基于领域的协同过滤是将用户的数据读入到内存中进行运算,也称为基于内存的协同过滤(Memory-based)。数据量少的情况下,可以在线实时推荐;基于模型的推荐(Model-based),采用机器学习的方式,分成训练集和测试集。离线训练时间比较长,但训练完成后,推荐过程比较快。
隐语义模型是指通过挖掘用户与物品之间的隐含联系,从而对用户进行推荐。

一、矩阵分解是什么?

在这里插入图片描述
如上表所示,是一个user-item的评分表。
矩阵分解就是从评分矩阵中分解出user矩阵和item矩阵
在这里插入图片描述
user矩阵列数和item矩阵行数,为k,即隐变量的个数,自己设定。
矩阵分解做推荐系统的主要思想是用已知的user-item矩阵来分解为两个user矩阵和item矩阵,对分解后的user矩阵和item矩阵相乘得到每个用户对每部电影的预测评分,评分值越大,表示用户喜欢该电影的可能性越大,该电影值得推荐给用户。
目标函数为:
在这里插入图片描述
step1:得到user-item矩阵:
在这里插入图片描述
step2:分解为user矩阵和item矩阵,隐含特征为k(自己设定),k越大,计算量越大,k值即user列数和item行数
在这里插入图片描述
将user矩阵和item矩阵得到每个用户对影片的评分预测。(user-item矩阵如何分解为user矩阵和item矩阵见下节)

在这里插入图片描述
step3.根据每个用户对影片的评分预测,对用户进行推荐。

二、user-item矩阵如何分解为user矩阵和item矩阵

分解的好不好需要用到评估指标,评估预测值和真实值之间的差距:
在这里插入图片描述
如何对目标函数进行最优化解法,有两种常用的方差:
1.交替最小二乘法(Alternating Least Squares,ALS);
2.随机梯度下降(Stochastic Gradient Descent,SGD

ALS

最小二乘法由统计学家提出,应用广泛,简而言之是要求预测值与真实值差值的平方和大最小。ALS交替最小二乘法是固定一个来优化另一个。
即:step1,固定user矩阵,优化item矩阵;
step2,固定item矩阵优化user矩阵;
step3.重复step1和step2,知道两个矩阵收敛。
针对目标函数:
step1:固定Y优化X
在这里插入图片描述
将目标函数转化为矩阵表达形式

在这里插入图片描述
对目标函数J关于x求梯度,并令梯度为零,得
在这里插入图片描述
求解后可得:
在这里插入图片描述
step2:同理求得y

SGD

梯度下降主要分为三种:
全量梯度下降:
特点:在每次更新时用所有样本,稳定,但收敛慢;
随机梯度下降:
每次更新时用1个样本,用1个样本来近似所有的样本,更快收敛,最终解在全局最优解附近;
小批量梯度下降:
每次更新用b个样本,折中,速度较快。

这篇关于推荐算法-矩阵分解(Matrix Factorization,MF)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326683

相关文章

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

在 Windows 上安装 DeepSeek 的完整指南(最新推荐)

《在Windows上安装DeepSeek的完整指南(最新推荐)》在Windows上安装DeepSeek的完整指南,包括下载和安装Ollama、下载DeepSeekRXNUMX模型、运行Deep... 目录在www.chinasem.cn Windows 上安装 DeepSeek 的完整指南步骤 1:下载并安装

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)