软件学院王建民、龙明盛团队提出极端降水临近预报大模型

本文主要是介绍软件学院王建民、龙明盛团队提出极端降水临近预报大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cd388103d80686df09f91ba3dc7ce7ca.png

 近日,清华大学软件学院王建民教授、龙明盛副教授团队提出了极端降水临近预报大模型,将数据驱动与物理驱动两大科学范式紧密结合,显著提高了公里尺度下0~3小时极端降水的预报能力,在全国62位气象预报专家的过程检验中大幅领先国际上的同类方法。目前该大模型已经在国家气象中心短临预报业务平台(SWAN 3.0)部署上线,将为全国极端降水天气短临预报业务提供支撑。

近年来,受全球气候变化的影响,短时强降水、暴风雨、暴雪、冰雹等极端降水天气发生频率逐年增加,严重威胁生产安全和人民的生命财产安全。更准确、更精细和更长预警提前量的降水临近预报业务能够更好地提供气象决策支持,为农业生产、新能源开发、航空航天等国家重大需求保驾护航。然而,极端降水天气过程大多只持续几十分钟且空间尺度在几公里范围,受到对流、气旋、地形等复杂过程和大气系统混沌效应的严重影响。基于物理方程模拟的数值预报技术很难对公里尺度的极端降水做出有效预报。在2023年5月27日世界气象组织峰会上,三小时内降水临近预报被列为未解决的重要科学难题之一。

e7f7dd5e82e88261ad50d53812ac6f01.png

基于雷达观测的降水临近预报是世界性难题之一

数值计算和深度学习是降水临近预报的两类主流方法,但均存在明显的缺陷。数值计算方法难以有效建模降水过程的时空多尺度特征,同时受到预报累积误差的制约,预报时效往往在一小时以内。深度学习方法虽然擅长建模非线性系统,但统计模型存在固有的小样本过平滑问题,预报求解过程缺少物理守恒规律约束,生成的数值场模糊失真严重,难以提供有业务价值的极端降水预报。

2acfa3d60fe8896690f6ae3c27e88e14.jpeg

物理建模与深度学习融合的临近预报大模型NowcastNet

针对上述挑战,2017年起,软件学院与国家气象中心、国家气象信息中心建立研究团队,就人工智能技术在气象大数据的应用开展合作。经过三年联合攻关,提出了临近预报大模型NowcastNet。该模型的核心是端到端建模降水物理过程的神经演变算子,实现了深度学习与物理规律的无缝隙融合。具体而言,研究团队首先设计了中尺度演变网络,用以建模平流运动等物理性质更显著的中尺度降水过程,并基于物质连续性方程(即质量守恒定律)设计了神经演变算子,端到端模拟降水过程中的十公里尺度运动,并通过反向传播最小化预报累积误差。其次,研究团队提出了对流尺度生成网络,以中尺度演变网络预测结果为条件,通过概率生成模型进一步捕捉对流生消等混沌效应更显著的公里尺度降水过程。NowcastNet在美国和中国近六年雷达观测资料上完成了训练。得益于上述融合设计,该模型兼具深度学习与物理建模的优势,在国际上首次将降水临近预报的时效延长至3小时,并弥补了极端降水预报的短板。

a2b81fd942f66c66690a6af4f97f2f35.jpeg

气象专家检验结果和数值指标评测结果

为了充分检验临近预报大模型NowcastNet对典型天气过程的业务指导价值,国家气象中心邀请了62位来自23个省市气象台的一线预报专家,针对中美两国2400个极端降水过程进行了后验检验和先验检验,并与目前业务中使用的PySTEPS系统、谷歌DeepMind与英国气象局联合提出的DGMR模型等进行了对比。NowcastNet在临界成功指数(CSI)、能量谱密度(PSD)等数值指标上全面超越现有技术,在71%的天气过程中被认为具有最高的预报价值。

50259f6515486150e5ca24495585de50.jpeg

1dcb4a76d85500d190da80a1d72561fe.jpeg

中国和美国极端降水天气过程的典型案例分析

在极端降水过程中,NowcastNet是唯一展现较强业务价值的临近预报技术。以中美两国的典型极端天气过程为例:2021年5月14日23时40分,中国江淮地区出现强降水过程,湖北、安徽等多个地区发布了暴雨红色预警,NowcastNet可以准确预测出三个强降水超级单体的变化过程。2021年12月11日9时30分,美国中部地区突发龙卷风灾害,造成89人死亡、676人受伤,NowcastNet可以对强降水的强度、落区和运动形态等给出更清晰、更准确的预报结果。检验表明,NowcastNet对于极端灾害天气的精准防控具有良好的指导意义。

研究成果以“高技巧极端降水临近预报大模型”(Skilful Nowcasting of Extreme Precipitation with NowcastNet)为题发表在《自然》(Nature)上,同时被《自然·新闻和观点》以“The Outlook for AI Weather Prediction”为题做了报道。该研究探索了数据驱动与物理驱动的“科学学习”新范式,提出了物理守恒约束下时空物质场建模和预测的一般方法,对其他具有多尺度物理特性的问题也具有应用前景。未来,研究团队将进一步推进该方案在物理问题求解、大气海洋模拟、工业设计仿真等场景下的应用。

清华大学软件学院王建民教授、龙明盛副教授和加州大学伯克利分校教授、清华大学荣誉教授迈克尔·乔丹(Michael I. Jordan)为论文的通讯作者。清华大学软件学院博士生张育宸和龙明盛副教授为论文的第一作者,硕士生陈凯源、邢蓝翔参加了研究工作。国家气象中心金荣花研究员提供了气象知识和数据支持并主持了全国范围内气象专家检验工作,罗兵、张小玲、薛峰、盛杰、韩丰、张小雯等专家为研究工作提供了指导、建议和帮助。研究得到国家自然科学基金创新研究群体项目、优秀青年科学基金项目和大数据系统软件国家工程研究中心的支持。

论文链接:

https://www.nature.com/articles/s41586-023-06184-4

供稿:软件学院

编辑:李华山

审核:郭玲

3737f82e9d358276ec41a0b4049449aa.png

这篇关于软件学院王建民、龙明盛团队提出极端降水临近预报大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/323612

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选