MetaAI提出全新验证链框架CoVE,大模型也可以通过“三省吾身”来缓解幻觉现象

本文主要是介绍MetaAI提出全新验证链框架CoVE,大模型也可以通过“三省吾身”来缓解幻觉现象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

4fdd2cbe2bc046c1b1af9ac28ad6f0f9.png

 

论文名称: Chain-of-Verification Reduces Hallucination in Large Language Models

论文链接: https://arxiv.org/abs/2309.11495

曾子曰:“吾日三省吾身”
--出自《论语·学而》

时至今日,生成幻觉(hallucination)仍然是大模型研究界中一个令人非常头疼的问题。生成幻觉是指大语言模型在针对一些问题给出看似合理但不符合真实事实的虚假回答,这对于大模型在一些风险场景中的落地应用提出了更高的要求。本文介绍一篇来自MetaAI的最新研究工作,本文参考大模型核心技术思维链(CoT)的设计模式,提出了一种大模型自身纠正错误(自省)的方法框架,称为验证链(Chain-of-Verification,CoVE)。CoVE首先会让模型根据用户输入的问题草拟一个初始回答,然后规划出一个对该初始回答进行事实核查的验证计划,随后使模型独立回答这些验证问题,保证问题之间不会产生影响,最后模型会综合以上所有信息产生一个验证结果。作者在MultiSpanQA和长格式文本生成等任务上进行了大量的实验,实验表明,CoVE方法可以有效缓解LLMs在各种任务中的生成幻觉现象

01. 引言

LLMs的训练语料库规模非常庞大,通常包含数十亿的文本标记数据,目前有很多研究表明,随着模型参数数量的增加,LLMs可以生成更多正确的事实陈述。但是对于一些位于数据集尾部分布的问题,即使是规模最大的模型仍然会出现幻觉现象,尤其是在一些长文本生成或长篇文本理解任务中。此外,目前LLMs的研究重心已经逐渐转向研究其在复杂问题上的推理能力。因此基于这一研究方向,本文作者开始考虑如何在模型生成的内部思维推理链上实现一些操作来缓解模型的幻觉现象,并提出了一种称为验证链的CoVE方法,CoVE方法使大模型先生成一个初始回答草稿,并根据草稿生成自我检查的验证计划,然后根据计划系统的回答这些子问题,最终根据子问题的结果来生成最终的响应,这一过程非常像大模型在自己进行“三省吾身”。作者发现,CoVE通过独立验证问题的方式会相比原始长回答带来更加准确的事实信息。

02. 本文方法

2.1 整体框架流程

本文提出的CoVE框架主要分为以下四个核心步骤:

(1)生成基线响应:给定一个用户查询文本,使用LLM生成第一个草稿响应

(2)验证计划的制定:根据输入查询和基线响应文本,LLM需要生成一个可以验证问题回答正确性的列表,这有助于LLM开启自我分析进程。

(3)执行验证计划:LLM需要依次回答每个验证问题,然后将答案与原始响应进行检查,以检查是否存在不一致的情况或错误

(4)生成最终验证响应:LLM需要根据执行验证计划得到的不一致情况(如果有),综合生成包含验证结果的修正后响应。

0accacb066fb459aa6399a19184957f3.png

 

上述四个步骤的执行情况如上图所示,这里给出了一个ChatGPT生成幻觉的示例,可以看到,CoVE对验证计划列表中的每个问题进行单独处理后,可以产生出与初始基线响应事实性完全相反的结果(希拉里·克林顿事实出生在芝加哥),通过回答这些问题并检查生成答案与基线响应是否一致,CoVE就可以将幻觉现象检测出来并进行更正。

2.2 执行验证计划的不同方式

上一小节中列出的四个步骤均需要提示同一个LLM来获得响应,其中步骤(1)(2)和(4)都可以通过单个文本提示来进行调用,但是对于幻觉检查质量的关键其实是在步骤(3)中的验证计划执行,因此作者对步骤(3)设计了多个不同版本,包括联合方法、2-step方法和分解方法。这些不同的版本涉及到单个提示、两个提示或每个问题独立的提示,其中分解方法的执行较为复杂,但是可以直接改进生成的结果。

2.2.1 联合方法

对于最简单的联合方法,计划和执行都是通过使用单个LLM提示来完成的,但是这种方法存在一个明显的缺陷,由于验证问题必须以初始基线响应为条件,因此这样联合产生的验证答案极有可能与初始响应中的内容有关,这有可能会在验证过程中产生二次幻觉

2.2.2 2-step方法

为了解决联合方法中存在的问题,作者将计划和执行分成单独的步骤,两个步骤都设置了专用的LLM提示,称为2-step方法。这时,规划提示会以第一步中的基线响应为条件,而由规划产生的验证问题则会在第二步中得到回答,其中至关重要的是,LLM提示的上下文仅包含问题,而不包含原始基线响应的内容,因而可以避免产生二次幻觉。

2.2.3 分解方法

除了上述两种方法,作者还提供了一种更加复杂的方法,即分解方法。分解方法将完全不以原始基线响应为条件,其可以消除来自基线响应中的任何潜在干扰。其要求在生成规划和执行规划时全都使用单独的提示并使LLM独立回答所有问题,这样可以消除答案上下文之间的任何潜在干扰。虽然这可能会增加计算成本,需要执行更多的LLM推理,因此必须从计划验证制定步骤中获取生成的问题集,并将它们解析为单独的问题列表,这样就可以对其进行批处理操作,实现并行推理来提高效率。在对每个验证问题回答完成之后,CoVE需要对这些答案与原始响应的一致性进行检查,这时,作者引入了一个额外的LLM提示来执行这一操作,这一操作需要同时以基线响应、验证问题和验证答案为条件,因而可以得到更加完善,消除幻觉后的回答。

03. 实验效果

本文的实验在多种文本生成和回答基准上进行,例如Wikidata、Wiki-Category lists、MultiSpanQA和长篇传记生成任务等。其中Wikidata基准需要模型根据列表形式的问题生成实体类的回答。Wiki-Category lists是一种相比Wikidata更加困难的集合生成任务,MultiSpanQA是一项标准的大模型阅读理解基准,其由包含多个独立答案的问题组成,本文的实验使用了闭卷设置。此外,为了评估CoVE在长文本生成方面的效果,作者使用了传记生成基线Factscore[1],LLM需要根据输入一个实体提示来直接生成其对应的传记

2313477dba16454ebe36baba5dd895b3.png

 

对于基线LLM,作者选用了开源的Llama 65B[2],上表展示了CoVE在列表回答任务上的实验效果,可以看到,CoVe相比Llama 65B的few-shot基线的精度提高了一倍多(从0.17到0.36)。此外,从正负分类的结果可以看出,在使用CoVE方法之后,模型生成的幻觉答案数量大幅减少(Neg:2.95到0.68),而非幻觉答案数量受到的影响很小(Pos:0.59到0.38)。

8a6af6de5a4c4fe2a73f2c3a3cd475bd.png

 

上表展示了CoVE在MultiSpanQA基线上的实验效果,可以看到,CoVe改善了Llama在普通QA问题上的回答正确率,尤其是其F1比Llama few-shot基线提高了 23%。

46b65c1d8f63483381f4c7254a779869.png

此外,在长格式文本生成方面,CoVE实现了相比列表回答和QA任务更加明显的性能增益,具体实验结果如上表所示,其在Factscore基线上得到的分数相比Llama few-shot基线增加了28% (55.9到71.4)。

51f1a5e0148141f590d62acb8ce140b8.png

 

此外,作者还在上图中展示了CoVE在事实改进细分方面的改进对比效果,其中黄色、浅绿色和绿色条柱为本文方法的效果,可以看到,CoVe主要在罕见事实和更常见事实方面提供了更明显的改正

04. 总结

本文引入了一种称为验证链(CoVE)的大模型幻觉消除方法,这是一种通过仔细考虑自身的反应并进行自我纠正的方法。CoVE通过将初始问题的回答进行合理的拆分,并对拆分的问题进行单独的验证,模型就可以相比回答原始查询时更加准确地回答问题。其次,在回答一组验证问题时,CoVE可以控制模型不受先前答案和上下文的影响,从而有效的减轻幻觉的生成。总体来说,CoVE是一项简单而有效的方法,本文作者还提到,后续可以为CoVE配备一些工具来使用。例如,在验证执行步骤中使用可以使用在线检索增强技术,这可能会带来进一步的性能提升。

参考

[1] Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual precision in long form text generation. arXiv preprint arXiv:2305.14251, 2023

[2] Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023b.


  关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区 

这篇关于MetaAI提出全新验证链框架CoVE,大模型也可以通过“三省吾身”来缓解幻觉现象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/323603

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言