ICCV 2021 | 新的去雪数据集CSD开源!更快更有效的去雪网络HDCW-Net

2023-11-01 11:40

本文主要是介绍ICCV 2021 | 新的去雪数据集CSD开源!更快更有效的去雪网络HDCW-Net,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss

95f5e16c10d0b5bbaf0d2be4f43aeff3.png

论文链接:

https://openaccess.thecvf.com/content/ICCV2021/papers/Chen_ALL_Snow_Removed_Single_Image_Desnowing_Algorithm_Using_Hierarchical_Dual-Tree_ICCV_2021_paper.pdf

数据集链接:

https://ccncuedutw-my.sharepoint.com/:u:/g/personal/104501531_cc_ncu_edu_tw/EfCooq0sZxxNkB7F8HgCyKwB-sJQtVE59_Gpb9soatYi5A?e=5NjDhb

代码链接:

https://github.com/weitingchen83/ICCV2021-Single-Image-Desnowing-HDCWNet

简介

最近因为科研的需要,开始找寻去雪网络的相关文章,发现去雪的文章相对于去雾或是去雨来说相对少,而我找到最近台湾大学以及华硕电脑在今年ICCV发表了一个大型去雪数据集以及新的去雪网络HDCW-Net,在各项数据集达到SOTA的性能,并且在执行速度上优于现有的算法,相当有趣,所以写了一帖文章供小伙伴们参考。

此外,我也发现这个团队去年也有在ECCV'20发表另一篇去雪的工作,有兴趣可以参考:https://link.springer.com/chapter/10.1007/978-3-030-58589-1_45

Single Image Desnowing (单张影像去雪),字面上就是给予一张含有雪的场景,透过影像重建的技术,将影像中的雪以及受损的影像内容还原回来。此任务由于大型数据集深度学习的进步,在近年有着相当大的突破,例如著名的JSTASR [1]以及DeSnowNet [2]的提出。然而在现今的去雪算法当中仍然存在着下面的问题:

  1. 对于真实世界场景的鲁棒性:因为雪的型态多样且复杂,通常包含snow streak, snow flake, 以及veiling effect,除此之外,雪的大小差异也相当大,而尺寸较大的雪现有的网络无法有效地去除。

  2. 现有的数据集不能反映出真实世界的场景:在现有的数据集当中,如:Snow-100K [1]和RWD [2],都缺少了snow streaks,使得网络在训练时没办法学习到更全面雪的信息。

方法

针对上述问题,提出了一个基于Dual-tree Wavelet Transform (DTCWT)的阶层式(Hierarchical Architecture)网络。DTCWT是Discrete Wavelet Transform的改良版,他拥有较好的方向性,能够有效的捕捉不同方向的特征,而雪通常含有不同的方向,如下图所示,相比于传统的DWT,DTCWT可以更有效地将不同方向的雪去做型态上的捕捉。此外,为了能更有效地去解决不同大小雪的问题,使用阶层式的分解方式,可以将形状较大的雪去做切割,让较大的雪可以分解至每一个子频带,使得尺寸问题可以被解决。

05fb58ca8824d47287efbfefef51e633.png

3840d693829e2684fa6512ed824017e1.png

除了上面的网络设计外,还提出了一个新型的特征称为Contradict Channel (CC),此特征可用于雪的场景作为一种用来判断图片是否有残余的雪的特征。此特征可以被定义如下:

cf17e45451286f81c325945636b2f532.png

8fdf9fb2026bf2bcb91cea551ff788e1.png

相较于干净的影像,当影像含有残存的雪时,contradcit channel的值就会较大,接近1。运用这个特性,我们就可以利用它作为一个还原影像是否残留雪的指针,去帮助网络训练。

a0c0859e0a18e81e0fa8835140929b18.png

此外,针对snow streak的部分,论文当中也提出了一个新的大型数据集Comprehensive Snow Dataset (CSD),供这个领域的研究者使用。

d66d0a9c1912edd3af989a8fc90bca0b.png

实验结果

论文当中做了相当多实验去验证有效性

首先是消融实验(Ablation Study):

● 针对不同的feature extraction方式做比较:

30e34af32d063ce265a20b48b5a61bbf.png

上表当中证明了,对比于其他feature extraction方式,使用DTCWT对于网络而言是一种有效的方式去做雪的特征萃取。

● 使用阶层式对于网络效能的提升:

c388ea5fa77cd1c01ef437fa2c480310.png

而此实验验证了,使用阶层式的分解方式对于去雪的效能也是有显着的帮助的,但过度的分解可能会带来效能的降低。

● 使用contradict channel对于去雪的效能比较:

5b832c0a5db8ce33101fc9bea13ba8b6.png

Contradict Channel的有效性也在此实验被验证,使用contradict channel做为计算loss的方式能够有效地增强去雪的效能。

● 与现有方法的比较:

ccb78a0f1752a91a84f689e39982dd75.png

5c68aa4e6cc319ec4a685e67bcd909c6.png

● 计算复杂度比较:

67b999b779cdd639dab1fcaa65202d10.png

而提出的算法在去雪效果以及计算复杂度也明显优于现有的去雪网络,在单张影像去雪工作又往前进了一步。

结语

读完这篇文章后,有两个特点非常值得学习

  1. 使用DTCWT做为特征的萃取的工具搭配阶层式的分解似乎对于去雪工作有着不错的效果。

  1. 除了传统的dark channel以及bright channel外,contradict channel对于雪来说是一个有效评估的特征。

参考文献

[1] Chen, W. T., Fang, H. Y., Ding, J. J., Tsai, C. C., & Kuo, S. Y. (2020, August). JSTASR: Joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal. In European Conference on Computer Vision (pp. 754-770). Springer, Cham.

[2] Liu, Y. F., Jaw, D. W., Huang, S. C., & Hwang, J. N. (2018). DesnowNet: Context-aware deep network for snow removal. IEEE Transactions on Image Processing, 27(6), 3064-3073.

[3] Chen, W. T., Fang, H. Y., Hsieh, C. L., Tsai, C. C., Chen, I., Ding, J. J., & Kuo, S. Y. (2021). ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-Tree Complex Wavelet Representation and Contradict Channel Loss. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4196-4205).

ICCV和CVPR 2021论文和代码下载后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集后台回复:Transformer综述,即可下载最新的两篇Transformer综述PDF
CVer-去一切交流群成立
扫码添加CVer助手,可申请加入CVer-去一切 微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。
一定要备注:研究方向+地点+学校/公司+昵称(如去一切+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群▲长按加小助手微信,进交流群
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看109df544a8faabc7340dd22da0889029.gif

这篇关于ICCV 2021 | 新的去雪数据集CSD开源!更快更有效的去雪网络HDCW-Net的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322703

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动