【算法学习笔记】27.动态规划 解题报告 SJTU OJ 1254 传手绢

2023-11-01 08:40

本文主要是介绍【算法学习笔记】27.动态规划 解题报告 SJTU OJ 1254 传手绢,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

活动的时候,老师经常带着同学们一起做游戏。这次,老师带着同学们一起传手绢。

游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着手绢,当老师吹哨子时开始传,每个同学可以把手绢传给自己左右的两个同学中的一个(左右任意),当老师在此吹哨子时,游戏停止,此时,拿着手绢的那个同学要给大家表演一个节目。

abc提出一个有趣的问题:有多少种不同的传手绢方法可以使得从abc手里开始传的手绢,传了m次以后,又回到abc手里。两种传手绢方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接手绢顺序组成的序列是不同的。比如有三个同学1号、2号、3号,并假设abc为1号,手绢传了3次回到abc手里的方式有1->2->3->1和1->3->2->1,共2种。

Input Format

共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。

Output Foramt

共一行,有一个整数,表示符合题意的方法数。

Sample Input

3 3 

Sample Output

2

Hint

40%的数据满足:3<=n<=30,1<=m<=20 100%的数据满足:3<=n<=30,1<=m<=30

 

此问题很容易让人联想到邻接矩阵乘法含义。wiki了一下,这类问题叫做”传球问题“  

证明在这里  矩阵乘法确实好理解 但是实际应用还是稍微复杂,

这里先用一个递归方案来把这个问题进行解析。

注意到一个人传球,只能传左一位和右一位,根据这个突破点就可以写成递归函数。

/*分治法
返回 一共n个人 还剩m次传球机会 最终传到第k个人手里的路线数
k是当前拿球的人的编号 1号是最开始拿球的人
*/
int passGame(int k,int n, int m){if(m==0)//若还剩0次传球机会 整好到了原处 那就返回1 表示原来的路线是对的 否则是0return (k==1) ? 1 : 0;m--;//开始传球了 所以要减少一次传球机会//向+1传的话int ans1 = passGame((k==n ? 1 : k+1 ),n,m);//向-1传的话int ans2 = passGame((k==1 ? n : k-1 ),n,m);return ans1+ans2;}    
分治法

然后调用passGame(1,n,m)即可

会超时,这种分治法的解决方案是从顶至底的。它会有很多重复的计算,所以我们就会想到和分治法路线相反的动态规划。

动态规划的一个核心思想就是将重复子问题提前计算,从而减少计算量。这也就意味着它必须从底向上计算。

在这个背景下,我们可能直觉想到的是设置一个dp[n][m] 其中d[n][m]表示n个人 传m次 回到原点的方案数,

然后想办法建立起 d[n][m]和d[n][m-1]的关系 或者和 d[n-1][m]的关系 或者和d[n-1][m-1]的关系,从而实现把这个问题分成若干个子问题来进行DP。

但是发现找到他们之间的关系,非常困难。

我们试着换一个思路,由分治法的思维,我们知道了一个事情就是 还剩s次传球机会时,球传到第k个人手里的路线数 = 还剩s-1次传球机会时,球传到第k+1个人手里的路线数 + 还剩s-1次传球机会,球传到第k-1个人手里的路线数

PS s-1的原因是最后还要耗费一次传球机会来把球传到k手里 k+1 k-1 只是简单的表示k的左右

那么我们就可以考虑构造一个dp[][]来存储还剩m次机会 传到第k个人手里的路线数目 这个dp方案就是把分治法给颠倒了而已 思路是完全一模一样的

 

//动态规划算法
int dp[35][35]={0};/*dp[i][j]表示 传i次球 传到第j个人的路线的个数
起始点和终止点都是为1号人
*/
int dp_game(int n,int m){dp[0][1]=1;//传0次 传到1号人手中 路线只有一个//开始找状态转移方程 /*其实想法很简单 就是想d[i][j]是从哪些状态过来的 d[i][j]应该是d[i-1][j-1]和d[i-1][j+1]来的 因为j只能收到j-1和j+1的球而每次传球恰好i+1传0次球 只有1号人才能接到球 其他人都是0 不用算*/for (int i = 1; i <= m; ++i){for (int j=1; j <= n; ++j){dp[i][j] = dp[i-1][j==1 ? n: j-1 ] + dp[i-1][j==n? 1:j+1];}}return dp[m][1];
}
动态规划

 

转载于:https://www.cnblogs.com/yuchenlin/p/sjtu_oj_1254.html

这篇关于【算法学习笔记】27.动态规划 解题报告 SJTU OJ 1254 传手绢的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/321826

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时