从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型

2023-11-01 07:04

本文主要是介绍从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型

  • 一、config文件解读
  • 二、开始训练
  • 三、数据集分析
  • 四、ncnn部署

从零开始的目标检测和关键点检测(一):用labelme标注数据集

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

[1]用labelme标注自己的数据集中已经标注好数据集(关键点和检测框),通过labelme2coco脚本将所有的labelme json文件集成为两个coco格式的json文件,即train_coco.json和val_coco.json。训练一个RTMDet模型,需要重写config文件。

一、config文件解读

1、数据集类型即coco格式的数据集,metainfo是指框的类别,因为这里只有一个glue的类,因此NUM_CLASSES为1,注意metainfo类别名后的逗号,

# 数据集类型及路径
dataset_type = 'CocoDataset'
data_root = 'data/glue_134_Keypoint/'
metainfo = {'classes': ('glue',)}
NUM_CLASSES = len(metainfo['classes'])

2、加载backnbone预训练权重和RTMDet-tiny预训练权重

# RTMDet-tiny
load_from = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_tiny_8xb32-300e_coco/rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth'
backbone_pretrain = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth'
deepen_factor = 0.167
widen_factor = 0.375
in_channels = [96, 192, 384]
neck_out_channels = 96
num_csp_blocks = 1
exp_on_reg = False

3、训练参数设置,如epoch、batchsize…

MAX_EPOCHS = 200
TRAIN_BATCH_SIZE = 8
VAL_BATCH_SIZE = 4
stage2_num_epochs = 20
base_lr = 0.004
VAL_INTERVAL = 5  # 每隔多少轮评估保存一次模型权重

4、default_runtime,即默认设置,在config文件夹的default_runtime.py可看到。不同的MM-框架的默认设置不一样(如default_scope = 'mmdet'),可以包含这个.py也可以直接复制过来。

default_scope = 'mmdet'
default_hooks = dict(timer=dict(type='IterTimerHook'),logger=dict(type='LoggerHook', interval=1),param_scheduler=dict(type='ParamSchedulerHook'),checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=2, save_best='coco/bbox_mAP'),# auto coco/bbox_mAP_50 coco/bbox_mAP_75 coco/bbox_mAP_ssampler_seed=dict(type='DistSamplerSeedHook'),visualization=dict(type='DetVisualizationHook'))
env_cfg = dict(cudnn_benchmark=False,mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),dist_cfg=dict(backend='nccl'))
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(type='DetLocalVisualizer',vis_backends=[dict(type='LocalVisBackend')],name='visualizer')
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
log_level = 'INFO'
load_from = None
resume = False

5、训练超参数配置

train_cfg = dict(type='EpochBasedTrainLoop',max_epochs=MAX_EPOCHS,val_interval=VAL_INTERVAL,dynamic_intervals=[(MAX_EPOCHS - stage2_num_epochs, 1)])val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')# 学习率
param_scheduler = [dict(type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,end=1000),dict(type='CosineAnnealingLR',eta_min=0.0002,begin=150,end=300,T_max=150,by_epoch=True,convert_to_iter_based=True)
]# 优化器
optim_wrapper = dict(type='OptimWrapper',optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),paramwise_cfg=dict(norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
auto_scale_lr = dict(enable=False, base_batch_size=16)

6、数据处理pipeline,做数据预处理(数据增强)

# DataLoader
backend_args = None
train_pipeline = [dict(type='LoadImageFromFile', backend_args=None),dict(type='LoadAnnotations', with_bbox=True),dict(type='CachedMosaic',img_scale=(640, 640),pad_val=114.0,max_cached_images=20,random_pop=False),dict(type='RandomResize',scale=(1280, 1280),ratio_range=(0.5, 2.0),keep_ratio=True),dict(type='RandomCrop', crop_size=(640, 640)),dict(type='YOLOXHSVRandomAug'),dict(type='RandomFlip', prob=0.5),dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),dict(type='CachedMixUp',img_scale=(640, 640),ratio_range=(1.0, 1.0),max_cached_images=10,random_pop=False,pad_val=(114, 114, 114),prob=0.5),dict(type='PackDetInputs')
]
test_pipeline = [dict(type='LoadImageFromFile', backend_args=None),dict(type='Resize', scale=(640, 640), keep_ratio=True),dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),dict(type='PackDetInputs',meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape','scale_factor'))
]

7、加载数据和标注并用对应pipeliane做预处理

train_dataloader = dict(batch_size=TRAIN_BATCH_SIZE,num_workers=4,persistent_workers=True,sampler=dict(type='DefaultSampler', shuffle=True),batch_sampler=None,dataset=dict(type='CocoDataset',data_root=data_root,metainfo=metainfo,ann_file='train_coco.json',data_prefix=dict(img='images/'),filter_cfg=dict(filter_empty_gt=True, min_size=32),pipeline=train_pipeline,backend_args=None),pin_memory=True)
val_dataloader = dict(batch_size=VAL_BATCH_SIZE,num_workers=2,persistent_workers=True,drop_last=False,sampler=dict(type='DefaultSampler', shuffle=False),dataset=dict(type='CocoDataset',data_root=data_root,metainfo=metainfo,ann_file='val_coco.json',data_prefix=dict(img='images/'),test_mode=True,pipeline=test_pipeline,backend_args=None))
test_dataloader = val_dataloader

8、定义模型结构backbone + neck + head

# 模型结构
model = dict(type='RTMDet',data_preprocessor=dict(type='DetDataPreprocessor',mean=[103.53, 116.28, 123.675],std=[57.375, 57.12, 58.395],bgr_to_rgb=False,batch_augments=None),backbone=dict(type='CSPNeXt',arch='P5',expand_ratio=0.5,deepen_factor=deepen_factor,widen_factor=widen_factor,channel_attention=True,norm_cfg=dict(type='SyncBN'),act_cfg=dict(type='SiLU', inplace=True),init_cfg=dict(type='Pretrained',prefix='backbone.',checkpoint=backbone_pretrain)),neck=dict(type='CSPNeXtPAFPN',in_channels=in_channels,out_channels=neck_out_channels,num_csp_blocks=num_csp_blocks,expand_ratio=0.5,norm_cfg=dict(type='SyncBN'),act_cfg=dict(type='SiLU', inplace=True)),bbox_head=dict(type='RTMDetSepBNHead',num_classes=NUM_CLASSES,in_channels=neck_out_channels,stacked_convs=2,feat_channels=neck_out_channels,anchor_generator=dict(type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),bbox_coder=dict(type='DistancePointBBoxCoder'),loss_cls=dict(type='QualityFocalLoss',use_sigmoid=True,beta=2.0,loss_weight=1.0),loss_bbox=dict(type='GIoULoss', loss_weight=2.0),with_objectness=False,exp_on_reg=exp_on_reg,share_conv=True,pred_kernel_size=1,norm_cfg=dict(type='SyncBN'),act_cfg=dict(type='SiLU', inplace=True)),train_cfg=dict(assigner=dict(type='DynamicSoftLabelAssigner', topk=13),allowed_border=-1,pos_weight=-1,debug=False),test_cfg=dict(nms_pre=30000,min_bbox_size=0,score_thr=0.001,nms=dict(type='nms', iou_threshold=0.65),max_per_img=300))

二、开始训练

1、开始训练

python tools/train.py data/glue_134_Keypoint/rtmdet_tiny_glue.py

训练结果

 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.719Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.483Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.766Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.766Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.766

2、测试一下训练结果

python demo/image_demo.py data/glue_134_Keypoint/test_image/test.png data/glue_134_Keypoint/rtmdet_tiny_glue.py --weights work_dirs/rtmdet_tiny_glue/best_coco_bbox_mAP_epoch_180.pth --device cpu

在这里插入图片描述

3、可视化训练过程

在这里插入图片描述
在这里插入图片描述

4、由于标注数据集的glue都是小目标的,因此大目标无法识别,如下:
在这里插入图片描述

三、数据集分析

1、可视化部分图像

在这里插入图片描述

框标注-框中心点位置分布

在这里插入图片描述

框标注-框宽高分布

显然都是小目标的检测

在这里插入图片描述

四、ncnn部署

在线模型转换:Deploee

上传文件完成在线转换

这篇关于从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/321304

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus