机器学习 之 K近邻(K-NearestNeighbor)文本算法的精确率

2023-11-01 06:10

本文主要是介绍机器学习 之 K近邻(K-NearestNeighbor)文本算法的精确率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0、推荐
  • 1、背景
  • 2、效果图
  • 3、本次实验整体流程
  • 4、这里不用词向量,而是用TF-IDF预处理后的向量
  • 5、源代码
  • 6、知识点普及
    • 6.1 K近邻优点
    • 6.2 K近邻缺点

0、推荐

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。

1、背景

最近的项目中,用到了很多机器学习的算法,每个机器学习的算法在不同的样本下的精准率是不同的。为了验证每个算法在每种不同样本数量的能力,就做了一下实验,本文讲的是“K近邻”在文本算法中的精准率。

相关其它机器学习算法的精准率:
决策树:机器学习 之 决策树(Decision Tree)文本算法的精确率
逻辑回归:机器学习 之 逻辑回归(LogisticRegression)文本算法的精确率
支持向量机:机器学习 之 支持向量机(SupportVectorMachine)文本算法的精确率
朴素贝叶斯:机器学习 之 朴素贝叶斯(Naive Bayesian Model)文本算法的精确率
随机森林:机器学习 之 随机森林(Random Forest)文本算法的精确率

机器学习各个算法对比:人工智能 之 机器学习常用算法总结 及 各个常用分类算法精确率对比

2、效果图

先看一下没有任何调参的情况下的效果吧!

K近邻:
在这里插入图片描述
通过以上数据可以看出在样本数量较低的情况下还不错,在样本数量在5000的时候效果还可以,但是到达20000的时候,准确率已经在65%左右了。

3、本次实验整体流程

1、先把整体样本读到内存中

2、把整体样本按照8:2的比例,分为80%的训练集,20%的测试集

3、然后“训练集”的样本 先分词,再转换为词向量

4、接着把训练集的样本和标签统一的传入算法中,得到拟合后的模型

5、把“测试集”的样本 先分词,再得到词向量

6、把测试集得出的词向量丢到拟合后的模型中,看得出的结果

7、把结果转换为准确率的形式,最后做成表格形式以便观看

这里应该多跑几遍不同样本,然后把结果取平均值,每次的结果还是稍有不同的。

4、这里不用词向量,而是用TF-IDF预处理后的向量

这里我们直接取得词向量,而不是经过TF-IDF处理过的词向量。如果处理过,效果会不如现在的好。

TF-IDF(词频-逆文本频率),前面的TF也就是常说到的词频,我们之前做的向量化也就是做了文本中各个词的出现频率统计,并作为文本特征,这个很好理解。关键是后面的这个IDF,即“逆文本频率”如何理解。有些句子中的词,比如说“的”,几乎所有句子都会出现,词频虽然高,但是重要性却应该比 主语、宾语等低。IDF就是来帮助我们来反应这个词的重要性的,进而修正仅仅用词频表示的词特征值。
概括来讲, IDF反应了一个词在所有文本中出现的频率,如果一个词在很多的文本中出现,那么它的IDF值应该低

加了TF-IDF处理后的效果:
在这里插入图片描述
经过TF-IDF处理后的效果比不处理效果好。所以,这里就要经过TF-IDF处理了哈。
以下源码中,如果加TF-IDF处理,只需要在jiabaToVector()函数中增加True这个参数就OK了

    vector_train = jiabaToVector(m_text_train, False, True)......vector_test = jiabaToVector(m_text_test, True, True)

5、源代码

import jieba
import datetime
# 向量\测试集\训练集\得分比对
from sklearn.model_selection  import train_test_split
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction

这篇关于机器学习 之 K近邻(K-NearestNeighbor)文本算法的精确率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/321016

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python使用Turtle实现精确计时工具

《Python使用Turtle实现精确计时工具》这篇文章主要为大家详细介绍了Python如何使用Turtle实现精确计时工具,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录功能特点使用方法程序架构设计代码详解窗口和画笔创建时间和状态显示更新计时器控制逻辑计时器重置功能事件

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示