【粒子群算法】particle swarm optimization

2023-11-01 05:20

本文主要是介绍【粒子群算法】particle swarm optimization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 优化问题
  • 粒子群算法PSO
  • pso的代码
  • 适应度函数
    • GW函数
      • GW函数
      • 运行主函数
  • 参考文献
  • thinkings

前言

1995年被提出,源于对鸟群扑食的行为研究。
许多问题最终被归结于优化问题。为了解决各种各样的优化问题,人们提出了许多优化算法,例如爬山法、遗传算法、神经网络算法等。

优化问题

1.寻找全局最优点。
2.要有较高的收敛速度。

粒子群算法PSO

在这里,每个优化问题的解都是搜寻空间中的一只鸟,我们称之为“粒子”。所有的粒子都有一个被优化函数决定的适应值,每个粒子还有一个速度决定它们飞行的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜寻。
在这里插入图片描述
x x x表示粒子起始位置, v v v表示粒子飞行速度, p p p表示搜索到的粒子的最优位置,PSO初始化为一群随机粒子(随机解),然后每一次迭代中,粒子通过跟踪两个极值来更新自己,第一个就是粒子本身所找到的最优解,这个解称为个体极值,另一个是整个种群目前找到的最优解,这个极值是全局极值。

  1. D D D维的目标搜索空间中,有 N N N个粒子组成一个群落,其中第 i i i个粒子表示为一个 D D D维的向量, X i = ( x i 1 , x i 2 , ⋯ , x i D ) , i = 1 , 2 , ⋯ , N X_{i}=(x_{i1},x_{i2},\cdots,x_{iD}),i=1,2,\cdots,N Xi=(xi1,xi2,,xiD),i=1,2,,N
  2. i i i个粒子的“飞行”速度 V i = ( v i 1 , v i 2 , ⋯ , v i D ) , i = 1 , 2 , ⋯ , N V_{i}=(v_{i1},v_{i2},\cdots,v_{iD}),i=1,2,\cdots,N Vi=(vi1,vi2,,viD),i=1,2,,N
  3. 个体极值 p b e s t ( p i 1 , p i 2 , ⋯ , p i D ) , i = 1 , 2 , ⋯ , N p_{best}(p_{i1},p_{i2},\cdots,p_{iD}),i=1,2,\cdots,N pbest(pi1,pi2,,piD),i=1,2,,N
  4. 全局极值 g i = ( p g 1 , p g 2 , ⋯ , p g D ) g_{i}=(p_{g1},p_{g2},\cdots,p_{gD}) gi=(pg1,pg2,,pgD)
  5. 找到上边两个最优值时,粒子根据公式来更新自己的位置
    在这里插入图片描述

pso的代码

% function [outputArg1,outputArg2] = untitled2(inputArg1,inputArg2)
% %UNTITLED2 此处显示有关此函数的摘要
% %   此处显示详细说明
% outputArg1 = inputArg1;
% outputArg2 = inputArg2;
% end
function[xm,fv]=PSO(fitness,N,c1,c2,w,M,D)
%%%%给定初始化条件%%%%%%
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个体数目
%%%%%%%%初始化种群的个体(可以在这里限定位置和速度的范围)%%%%%%%%%%
format long;
for i=1:Dfor j=1:Dx(i,j)=randn;%随机初始化位置v(i,j)=randn;%随机初始化速度end
end
%%%%%%%%%%%%先计算各个粒子的适应度,并初始化Pi和Pg%%%%%%%%%%%%%%%
for i=1:Np(i)=fitness(x(i,:));y(i,:)=x(i,:);
end
pg=x(N,:);%pg为全局最优 global
for i=1:(N-1)if fitness(x(i,:))<fitness(gg)pg=x(i,:);end
end
%%%%%%%%%%进入主要循环,按照公式依次迭代,直到满足精度要求%%%%%%%%%%%%%%%%%%%
for t=1:Mfor i=1:N%更新速度位移v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));x(i,:)=x(i,:)+v(i,:);if fitness(x(i,:))<p(i)p(i)=fitness(x(i,:));y(i,:)=x(i,:);endif p(i)<fitness(pg)pg=y(i,:);endendPbest(t)=fitness(pg);
end
%%%%%%%%%%%%最后给出计算结果
disp('*************************************')
disp('目标函数取最小值时的自变量:')
xm=pg'
disp('目标函数的最小值为:')
fv=fitness(pg)
disp('*************************************')

适应度函数

粒子适应度是反映粒子当前位置优劣的一个参数。两个经典的适应度函数为GW函数和RA函数。

GW函数

GW函数

function y=GW(x)
%输入x,给出相应的y值,在x=(0,0,0,0,0,0,...,0)处有全局极小点0
[row,col]=size(x);
if row>1error('我滴小可爱吖,您输入的参数错误')
end
y1=1/4000*sum(x.^2);
y2=1;
for h=1:coly2=y2*cos(x(h)/sqrt(h))
end
y=y1-y2+1;
y=-y;

运行主函数

%画图GW
x=[-10:0.5:10];
y=x;
[X,Y]=meshgrid(x,y);
[row,col]=size(X);
for l=1:colfor h=1:rowz(h,l)=GW([X(h,l),Y(h,l)]);end
end
surf(X,Y,z);
title('GW函数图像by小贾')
shading interp

各个坐标在命令行窗口给出
在这里插入图片描述

参考文献

matlab优化算法

thinkings

2022/06/12上午,这代码看起来有点费劲,咋那么多。

这篇关于【粒子群算法】particle swarm optimization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/320767

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/