【图像分类】实战——使用DenseNet实现识别秃头(pytorch)

2023-11-01 02:30

本文主要是介绍【图像分类】实战——使用DenseNet实现识别秃头(pytorch),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

摘要

导入项目使用的库

设置全局参数

图像预处理

 读取数据

设置模型

设置训练和验证

测试

完整代码


摘要

​     我在前面的文章已经写了很多模型的实战,这是实战的最后一篇了。我没有加入可视化,也没有对代码做过多的装饰,只希望用最简单的方式让大家知道分类模型是怎样实现的。

    今天我们用DenseNet实现对秃头的分类,数据集我放在百度网盘了,地址:链接:https://pan.baidu.com/s/177ethB_1ZLyl8_Ef1lJxSA 提取码:47fo 。这个数据集可能让广大的程序员扎心了。

下面展示一下数据集的样例。

这个都是秃顶的,他们的共同特点:都是男士,为啥女士不秃顶呢? 

导入项目使用的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from torchvision.models import densenet121

 

设置全局参数

设置BatchSize、学习率和epochs,判断是否有cuda环境,如果没有设置为cpu

# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 32
EPOCHS = 5
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

图像预处理

      在做图像与处理时,train数据集的transform和验证集的transform分开做,train的图像处理出了resize和归一化之外,还可以设置图像的增强,比如旋转、随机擦除等一系列的操作,验证集则不需要做图像增强,另外不要盲目的做增强,不合理的增强手段很可能会带来负作用,甚至出现Loss不收敛的情况。
 

# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

 读取数据

这个数据集,作者已经做过调整,可以直接使用Python的默认方式读取数据。数据的目录如下图:

 训练集中有1.6万张图片,其中有3千多个是秃头,验证集有2万多张,其中秃头是470张,数量差别太大我随机删了一部分。然后,写读取数据的代码。

dataset_train = datasets.ImageFolder('Dataset/Train', transform)
dataset_test = datasets.ImageFolder('Dataset/Validation',transform_test)
# 读取数据
print(dataset_train.imgs)# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型


使用交叉熵作为loss,模型采用densenet121,建议使用预训练模型,我在调试的过程中,使用预训练模型可以快速得到收敛好的模型,使用预训练模型将pretrained设置为True即可。更改最后一层的全连接,将类别设置为2,然后将模型放到DEVICE。优化器选用Adam。

# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model_ft = densenet121(pretrained=True)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, 2)
model_ft.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)def adjust_learning_rate(optimizer, epoch):"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""modellrnew = modellr * (0.1 ** (epoch // 50))print("lr:", modellrnew)for param_group in optimizer.param_groups:param_group['lr'] = modellrnew

设置训练和验证

 最外层是循环的是每个epochs,先训练,后验证。下面分别讲一下训练和验证的过程。

训练过程必须经历的步骤:

第一步:将输入input向前传播,进行运算后得到输出output,代码:output = model(data)

第二步:将output再输入loss函数,计算loss值(是个标量),代码:  loss = criterion(output, target)

第三步:将梯度反向传播到每个参数,代码:  loss.backward()

第四步:将参数的grad值初始化为0,代码: optimizer.zero_grad()

第五步:更新权重,代码: optimizer.step()

验证过程和训练过程基本相似。

 

# 定义训练过程def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 50 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))# 验证过程
def val(model, device, test_loader):model.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)_, pred = torch.max(output.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))# 训练for epoch in range(1, EPOCHS + 1):adjust_learning_rate(optimizer, epoch)train(model_ft, DEVICE, train_loader, optimizer, epoch)val(model_ft, DEVICE, test_loader)
torch.save(model_ft, 'model.pth')

完成后就可以run了,运行结果如下: 

测试

测试集存放的目录如下图:

第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!我们在训练时,Bald类别是0,NoBald类别是1,所以我定义classes为('Bald','NoBald')。

第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

第三步 加载model,并将模型放在DEVICE里,

第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。

import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import osclasses=('Bald','NoBald')
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)path='Dataset/Test/Bald/'
testList=os.listdir(path)
for file in testList:img=Image.open(path+file)img=transform_test(img)img.unsqueeze_(0)img = Variable(img).to(DEVICE)out=model(img)# Predict_, pred = torch.max(out.data, 1)print('Image Name:{},predict:{}'.format(file,classes[pred.data.item()]))

运行结果如下:

第二种方法可以使用pytorch默认加载数据集的方法。

import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variableclasses=('Bald','NoBald')
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)dataset_test = datasets.ImageFolder('Dataset/Test',transform_test)
print(len(dataset_test))
# 对应文件夹的labelfor index in range(len(dataset_test)):item = dataset_test[index]img, label = itemimg.unsqueeze_(0)data = Variable(img).to(DEVICE)output = model(data)_, pred = torch.max(output.data, 1)print('Image Name:{},predict:{}'.format(dataset_test.imgs[index], classes[pred.data.item()]))index += 1

运行结果:

完整代码

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transformsimport torchvision.datasets as datasets
from torch.autograd import Variable
from torchvision.models import densenet121# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 32
EPOCHS = 5
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 数据预处理transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
dataset_train = datasets.ImageFolder('Dataset/Train', transform)
dataset_test = datasets.ImageFolder('Dataset/Validation',transform_test)
# 读取数据
print(dataset_train.imgs)# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model_ft = densenet121(pretrained=True)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, 2)
model_ft.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)def adjust_learning_rate(optimizer, epoch):"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""modellrnew = modellr * (0.1 ** (epoch // 50))print("lr:", modellrnew)for param_group in optimizer.param_groups:param_group['lr'] = modellrnew# 定义训练过程def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 50 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))# 验证过程
def val(model, device, test_loader):model.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)output = model(data)loss = criterion(output, target)_, pred = torch.max(output.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))# 训练for epoch in range(1, EPOCHS + 1):adjust_learning_rate(optimizer, epoch)train(model_ft, DEVICE, train_loader, optimizer, epoch)val(model_ft, DEVICE, test_loader)
torch.save(model_ft, 'model.pth')

DenseNet图像分类.zip-深度学习文档类资源-CSDN下载

这篇关于【图像分类】实战——使用DenseNet实现识别秃头(pytorch)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319846

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB