WebGL三维模型实现Phong着色(WebGL进阶05)

2023-11-01 01:40

本文主要是介绍WebGL三维模型实现Phong着色(WebGL进阶05),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

WebGL三维模型实现Phong着色

  • 1. demo效果
  • 2. Phong着色与Gouraud 着色
    • 2.1Gouraud 着色
    • 2.2 Phong 着色
  • 3. 实现要点
  • 4. demo代码

1. demo效果

在这里插入图片描述
在这里插入图片描述

2. Phong着色与Gouraud 着色

通过前面几篇文章,大致知道典型的照明技术有三种:漫反射光(diffuse light)、环境光(ambient light)和反射光(specular light)。通过与它们组合使用可以实现更加逼真的照明效果。

2.1Gouraud 着色

前几篇文章的光照实现都是在顶点着色器实现的,会对每个三角形的顶点进行一次着色,这样的着色称为Gouraud 着色,Gouraud 着色时颜色信息从顶点着色器传向片元着色器的过程中会进行颜色插值,因此在颜色变化的边界处可能会出现锯齿。尤其是在顶点数比较少的时候。下图是Gouraud 着色的效果,可以看到红色框内的阴影有些许锯齿
在这里插入图片描述

2.2 Phong 着色

Gouraud着色是在顶点着色器处理处理完成在向片元着色器传输的过程中会进行颜色插值,Phong 着色是直接在片元着色器处理,是对每个像素进行颜色插值。与Gouraud着色相比,Phong 着色使用逐像素颜色插值来消除不自然的锯齿,计算量会大一些,但在相同顶点数量的情况下,可以获得更加平滑的阴影和更美丽自然的高光。下图是使用Phong着色实现的效果,可以与Gouraud着色的效果对比一下

Phong着色效果
在这里插入图片描述
Gouraud着色效果
在这里插入图片描述

3. 实现要点

与上一篇文章相比,这一次将计算光的过程放在了片元着色器中,但是在顶点着色器中需要定义varying变量vNormal和vColor向片元着色器中传值法线信息和顶点颜色信息

//顶点着色器
var VSHADER_SOURCE = `attribute vec3 position; //顶点位置信息attribute vec4 color; //颜色attribute vec3 normal; //法线uniform mat4 uMvpMatrix; //模型视图投影矩阵varying vec3 vNormal; //向片元着色器传值法线信息varying vec4 vColor; //向片元着色器传值颜色信息void main(){vNormal = normal;vColor = color;gl_Position = uMvpMatrix*vec4(position,1.0); //将模型视图投影矩阵与顶点坐标相乘赋值给顶点着色器内置变量gl_Position}`

在片元着色器中接收顶点着色器传来的法线信息和顶点颜色信息,然后分别计算慢反射光、反射光,并与接收到的环境颜色,使用公式:颜色 = 顶点颜色 * 漫反射光 + 反射光 + 环境光 计算着色使用的颜色

//片元着色器
var FSHADER_SOURCE = `#ifdef GL_ESprecision mediump float; // 设置float类型为中精度#endifuniform mat4 uInvMatrix;//模型坐标变换矩阵的逆矩阵uniform vec3 uLightDirection;//平行光方向uniform vec4 uAmbientLightColor;//环境光颜色uniform vec3 uEyeDirection;//视点方向varying vec3 vNormal; //接收法线信息varying vec4 vColor; //接收颜色信息void main(){vec3 invLight = normalize(uInvMatrix*vec4(uLightDirection,0.0)).xyz;vec3 invEye = normalize(uInvMatrix*vec4(uEyeDirection,0.0)).xyz;vec3 halfLE = normalize(invLight + invEye);//半程向量float diffuse = clamp(dot(vNormal,invLight),0.0,1.0);//将结果限定在0.0~1.0内float specular = pow(clamp(dot(vNormal, halfLE), 0.0, 1.0), 50.0);//计算高光//颜色 = 顶点颜色 * 漫反射光 + 反射光 + 环境光vec4 destColor = vColor*vec4(vec3(diffuse),1.0) + vec4(vec3(specular), 1.0)+uAmbientLightColor;gl_FragColor = destColor;//将计算的颜色信息赋值给内置变量gl_FragColor}
`

4. demo代码

<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8"><title></title>
</head><body><!--通过canvas标签创建一个800px*800px大小的画布--><canvas id="webgl" width="800" height="800"></canvas><script type="text/javascript" src="./lib/cuon-matrix.js"></script><script>//顶点着色器var VSHADER_SOURCE = `attribute vec3 position; //顶点位置信息attribute vec4 color; //颜色attribute vec3 normal; //法线uniform mat4 uMvpMatrix; //模型视图投影矩阵varying vec3 vNormal; //向片元着色器传值法线信息varying vec4 vColor; //向片元着色器传值颜色信息void main(){vNormal = normal;vColor = color;gl_Position = uMvpMatrix*vec4(position,1.0); //将模型视图投影矩阵与顶点坐标相乘赋值给顶点着色器内置变量gl_Position}`//片元着色器var FSHADER_SOURCE = `#ifdef GL_ESprecision mediump float; // 设置float类型为中精度#endifuniform mat4 uInvMatrix;//模型坐标变换矩阵的逆矩阵uniform vec3 uLightDirection;//平行光方向uniform vec4 uAmbientLightColor;//环境光颜色uniform vec3 uEyeDirection;//视点方向varying vec3 vNormal; //接收法线信息varying vec4 vColor; //接收颜色信息void main(){vec3 invLight = normalize(uInvMatrix*vec4(uLightDirection,0.0)).xyz;vec3 invEye = normalize(uInvMatrix*vec4(uEyeDirection,0.0)).xyz;vec3 halfLE = normalize(invLight + invEye);//半程向量float diffuse = clamp(dot(vNormal,invLight),0.0,1.0);//将结果限定在0.0~1.0内float specular = pow(clamp(dot(vNormal, halfLE), 0.0, 1.0), 50.0);//计算高光//颜色 = 顶点颜色 * 漫反射光 + 反射光 + 环境光vec4 destColor = vColor*vec4(vec3(diffuse),1.0) + vec4(vec3(specular), 1.0)+uAmbientLightColor;gl_FragColor = destColor;//将计算的颜色信息赋值给内置变量gl_FragColor}`onload = function () {//通过getElementById()方法获取canvas画布var canvas = document.getElementById('webgl');//通过方法getContext()获取WebGL上下文var gl = canvas.getContext('webgl') || canvas.getContext('experimental-webgl');//创建程序对象var prg = createProgram(VSHADER_SOURCE, FSHADER_SOURCE);//获取顶点位置、法线、颜色的存储地址var attLocations = {position: gl.getAttribLocation(prg, 'position'),normal: gl.getAttribLocation(prg, 'normal'),color: gl.getAttribLocation(prg, 'color'),}//每个顶点属性的大小(分量数)var attStrides = {position: 3,normal: 3,color: 4,}// 生成绘制甜圈圈的信息var torusData = torus(50, 50, 3.0, 8.0);var position = torusData[0];var normal = torusData[1];var color = torusData[2];var index = torusData[3];// 创建存放顶点、法线、颜色的VBOvar vbos = {position: create_vbo(position),normal: create_vbo(normal),color: create_vbo(color),}// 设置VBOset_attribute(vbos, attLocations, attStrides);// 创建IBOvar ibo = create_ibo(index);// IBO绑定gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ibo);//获取uniform变量模型视图投影矩阵、模型坐标变换矩阵的逆矩阵、平行光方向、环境光颜色、视角方向var uniformLocations = {uMvpMatrix: gl.getUniformLocation(prg, 'uMvpMatrix'),uInvMatrix: gl.getUniformLocation(prg, 'uInvMatrix'),uLightDirection: gl.getUniformLocation(prg, 'uLightDirection'),uAmbientLightColor: gl.getUniformLocation(prg, 'uAmbientLightColor'),uEyeDirection: gl.getUniformLocation(prg, 'uEyeDirection'),}//给顶点着色器uniform变量uLightDirection-平行光方向传值[-2.5, 3.5, 0.5]gl.uniform3fv(uniformLocations.uLightDirection, [-2.5, 3.5, 0.5]);//给顶点着色器uniform变量uAmbientLightColor- 环境光颜色传值(0.2, 0.1, 0.2, 1.0)gl.uniform4f(uniformLocations.uAmbientLightColor, 0.2, 0.1, 0.2, 1.0);//给顶点着色器uniform变量uEyeDirection-视点方向传值[0.0, 0.0, 20.0]gl.uniform3fv(uniformLocations.uEyeDirection, [0.0, 0.0, 20.0]);var currentAngle = [0.0, 0.0]; //当前旋转的角度[x-axis, y-axis]var g_MvpMatrix = new Matrix4(); //模型视图投影矩阵 var viewProjMatrix = new Matrix4(); //创建视图投影矩阵var modelMatrix = new Matrix4(); //创建模型矩阵var invMatrix = new Matrix4(); //创建模型矩阵viewProjMatrix.setPerspective(45.0, canvas.width / canvas.height, 1.0, 100.0);viewProjMatrix.lookAt(0.0, 20.0, 30.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);gl.enable(gl.DEPTH_TEST); //开启隐藏面消除gl.depthFunc(gl.LEQUAL); //如果传入值小于或等于深度缓冲区值,则通过gl.enable(gl.CULL_FACE); //激活多边形正反面剔除var rotateSpeed = 0.1; // 自动旋转速度(function tick() {// gl初始化gl.clearColor(0.0, 0.0, 0.0, 1.0); //指定调用 clear() 方法时使用的颜色值gl.clearDepth(1.0); //设置深度清除值gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); //清空颜色和深度缓冲区//计算模型视图投影矩阵 g_MvpMatrix.set(viewProjMatrix); //设置视图投影矩阵 modelMatrix.setRotate(currentAngle[0], 1.0, 0.0, 0.0); //沿X轴旋转设置矩阵modelMatrix.rotate(currentAngle[1], 0.0, 1.0, 0.0); //沿Y轴旋转设置矩阵rotateSpeed += 0.3;//modelMatrix.rotate(rotateSpeed, 0.0, 1.0, 1.0); //更新旋转矩阵g_MvpMatrix.multiply(modelMatrix) //相乘模型变换矩阵//计算模型坐标变换矩阵的逆矩阵invMatrix.setInverseOf(modelMatrix)//向着色器传值模型视图投影矩阵uMvpMatrix、模型坐标变换矩阵的逆矩阵uInvMatrixgl.uniformMatrix4fv(uniformLocations.uMvpMatrix, false, g_MvpMatrix.elements);gl.uniformMatrix4fv(uniformLocations.uInvMatrix, false, invMatrix.elements);//绘图gl.drawElements(gl.TRIANGLES, index.length, gl.UNSIGNED_SHORT, 0);gl.flush();requestAnimationFrame(tick)})();initEventHandlers(canvas, currentAngle) //注册鼠标事件//创建程序对象function createProgram(vshader, fshader) {//创建顶点着色器对象var vertexShader = loadShader(gl.VERTEX_SHADER, vshader);//创建片元着色器对象var fragmentShader = loadShader(gl.FRAGMENT_SHADER, fshader);if (!vertexShader || !fragmentShader) {return null}//创建程序对象programvar program = gl.createProgram();if (!gl.createProgram()) {return null}//分配顶点着色器和片元着色器到programgl.attachShader(program, vertexShader);gl.attachShader(program, fragmentShader);//链接programgl.linkProgram(program);//检查程序对象是否连接成功var linked = gl.getProgramParameter(program, gl.LINK_STATUS);if (!linked) {var error = gl.getProgramInfoLog(program);console.log('程序对象连接失败: ' + error);gl.deleteProgram(program);gl.deleteShader(fragmentShader);gl.deleteShader(vertexShader);return null}//使用programgl.useProgram(program);gl.program = program;//返回程序program对象return program}function loadShader(type, source) {// 创建顶点着色器对象var shader = gl.createShader(type);if (shader == null) {console.log('创建着色器失败');return null}// 引入着色器源代码gl.shaderSource(shader, source);// 编译着色器gl.compileShader(shader);// 检查顶是否编译成功var compiled = gl.getShaderParameter(shader, gl.COMPILE_STATUS);if (!compiled) {var error = gl.getShaderInfoLog(shader);console.log('编译着色器失败: ' + error);gl.deleteShader(shader);return null}return shader}function initEventHandlers(canvas, currentAngle) {var dragging = false; //默认鼠标拖动不旋转物体var lastX = -1,lastY = -1; //鼠标最后的位置canvas.onmousedown = function (ev) { //注册鼠标按下事件var x = ev.clientX,y = ev.clientY;//鼠标在物体上开始拖动var rect = ev.target.getBoundingClientRect();if (rect.left <= x && x < rect.right && rect.top <= y && y < rect.bottom) {lastX = x;lastY = y;dragging = true;}}//鼠标松开拖动结束canvas.onmouseup = function (ev) {dragging = false;}canvas.onmousemove = function (ev) { //注册鼠标移动事件var x = ev.clientX,y = ev.clientY;if (dragging) {var factor = 100 / canvas.height; //旋转因子var dx = factor * (x - lastX);var dy = factor * (y - lastY);//沿Y轴的旋转角度控制在-90到90度之间currentAngle[0] = Math.max(Math.min(currentAngle[0] + dy, 90.0), -90.0);currentAngle[1] = currentAngle[1] + dx;}lastX = x;lastY = y;}}// 创建VBOfunction create_vbo(data) {//创建缓冲区对象var vbo = gl.createBuffer();//绑定缓冲区到ARRAY_BUFFERgl.bindBuffer(gl.ARRAY_BUFFER, vbo);//将数据写入缓冲区对象gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(data), gl.STATIC_DRAW);//解绑缓冲区gl.bindBuffer(gl.ARRAY_BUFFER, null);return vbo}// 向VBO写入数据function set_attribute(vbo, attLocation, attStride) {for (var key in vbo) {//绑定缓冲区到ARRAY_BUFFERgl.bindBuffer(gl.ARRAY_BUFFER, vbo[key]);//分配缓存区到指定地址gl.vertexAttribPointer(attLocation[key], attStride[key], gl.FLOAT, false, 0, 0);//开启缓冲区gl.enableVertexAttribArray(attLocation[key]);}}// 创建IBOfunction create_ibo(data) {//创建缓冲区对象var ibo = gl.createBuffer();//绑定缓冲区到ELEMENT_ARRAY_BUFFERgl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ibo);//将数据写入缓冲区对象gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Int16Array(data), gl.STATIC_DRAW);//解绑缓冲区gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);return ibo;}//生成甜圈圈//第一个参数表示管道截面圆分段数,第二个参数表示管道圆的分段数,//第三个参数管道截面圆的半径。第四个参数表示从管道中心到管道截面圆中心的距离function torus(row, column, irad, orad) {var position = new Array(),normal = new Array(),color = new Array(),index = new Array();for (var i = 0; i <= row; i++) {var r = Math.PI * 2 / row * i; //管道圆上每个分段的弧度var rr = Math.cos(r);var ry = Math.sin(r);for (var ii = 0; ii <= column; ii++) {var tr = Math.PI * 2 / column * ii;//每个顶点位置的x、y、z分量var tx = (rr * irad + orad) * Math.cos(tr);var ty = ry * irad;var tz = (rr * irad + orad) * Math.sin(tr);var rx = rr * Math.cos(tr);var rz = rr * Math.sin(tr);position.push(tx, ty, tz);normal.push(rx, ry, rz);var tc = hsva(360 / column * ii, 1, 1, 1);color.push(tc[0], tc[1], tc[2], tc[3]);}}for (i = 0; i < row; i++) {for (ii = 0; ii < column; ii++) {r = (column + 1) * i + ii;index.push(r, r + column + 1, r + 1);index.push(r + column + 1, r + column + 2, r + 1);}}return [position, normal, color, index];}//将HSV颜色转换为RGB颜色function hsva(h, s, v, a) {if (s > 1 || v > 1 || a > 1) {return;}var th = h % 360;var i = Math.floor(th / 60);var f = th / 60 - i;var m = v * (1 - s);var n = v * (1 - s * f);var k = v * (1 - s * (1 - f));var color = new Array();if (!s > 0 && !s < 0) {color.push(v, v, v, a);} else {var r = new Array(v, n, m, m, k, v);var g = new Array(k, v, v, n, m, m);var b = new Array(m, m, k, v, v, n);color.push(r[i], g[i], b[i], a);}return color;}}</script>
</body></html>

这篇关于WebGL三维模型实现Phong着色(WebGL进阶05)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319592

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU