代碼隨想錄算法訓練營|第五十四天|300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组。刷题心得(c++)

本文主要是介绍代碼隨想錄算法訓練營|第五十四天|300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组。刷题心得(c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讀題

300.最长递增子序列

看完代码随想录之后的想法

思想上很簡單,dp[i]表示i之前的包括i的numbers[i]節尾的最長上升子序列的長度

並且透過兩層迴圈,一層遍歷全部,一層遍歷到i,透過比較當前dp[i]還是dp[j] + 1哪個比較大,來更新動態規劃的dp數組數據。

674. 最长连续递增序列

自己看到题目的第一想法

稍微將300轉一下就好,dp[i] 改為到i之前的最長連續子序列長度為dp[i],公式轉為假設nums[i] > nums[i - 1] 就將dp[i] 的值改為前一個值的個數 + 1就好了

718. 最长重复子数组

自己看到题目的第一想法

的確比較有難度,要思考如何去找出重複子序列,但是將nums1以及nums2的對應表畫出來後,會發現可以透過左上角的值來看重複度,假設左上角為1,那就代表前一個num2的值與前一個num1的值相等,所以當前的值如果也相等,那就要基於dp[i - 1][j - 1]的值 + 1,雖然這個想法完整了,但是自己對於下標的定義沒有想的很清楚,主要是透過畫圖模擬,找出規律並推出遞推公式。

看完代码随想录之后的想法

看完之後,發現卡哥的做法比較直覺一點,但要想到比較難,我的想法主要是透過畫圖推出,而卡哥是直接在整體数組框架上往外擴一層,就免除了我在nums1[i] != nums2[j] 需要做的額外操作,兩者都可以通過,只是方法不同而已,下標的定義也讓我之前比較模糊的定義有了清晰的了解。

300.最长递增子序列 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i] 代表 i 之前包含i 的number[i] 結尾的最大遞增子序列的長度是多少

  2. 遞推公式

    透過兩層迴圈,一個遍歷numbers.size的數組的長度,一個遍歷到i的長度

    if (number[i] > number[j]) dp[i] = max(dp[i], dp[j] + 1)

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    每個數做為結尾都至少含有一個,所以將數組初始化為1

  4. 確定遍歷順序

    0 到 i 因為需要前面的數據來進行遍歷,所以是由前往後。

    0 到 i - 1 只要都有遍歷到就可以了,往前或往後都沒有關係,但為了方便理解,默認由前往後

Code

class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp (nums.size(), 1);int result = 1;for(int i = 1; i < nums.size(); i++ ) {for(int j = 0; j < i; j++) {if(nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if(dp[i] > result) result = dp[i];}return result;}
};

 

674. 最长连续递增序列 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i] 代表 i 之前包含i 的number[i] 結尾的最長連續遞增子序列的長度是多少

  2. 遞推公式

    if (number[i] > number[i - 1]) dp[i] = dp[i - 1] + 1;

    假設number[i] > number[i - 1] 代表number[i - 1]之前都是連續遞增的,所以加上當前的數

    如果沒有大於,就維持初始化

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    每個數做為結尾都至少含有一個,所以將數組初始化為1

  4. 確定遍歷順序

    0 到 i 因為需要前面的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp (nums.size(), 1);int result = 1;for(int i = 1; i < nums.size(); i++ ) {if(nums[i] > nums[i - 1]) dp[i] = dp[i - 1] + 1;if(dp[i] > result) result = dp[i];}return result;}
};

 

718. 最长重复子数组 - 實作

思路

  1. 定義DP數組以及下標的含意

    dp[i][j] 代表 0~ i 的nums1以及 0 ~ j 的nums2最長連續遞增子序列長度為dp[i][j]

  2. 遞推公式

    if(nums1[i] == nums2[j]) { if(i > 0 && j > 0) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] += 1; }

    假設nums1[i] == nums[j] 其中一個不大於 0 則只加一,如果都大於1 則看左上角的數

  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    最少為0,所以初始化為0

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size(), vector<int>(nums2.size(), 0));int result = 0;for(int i = 0; i < nums1.size(); i++) {for(int j = 0; j < nums2.size(); j++) {if(nums1[i] == nums2[j]) {if(i > 0 && j > 0) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] += 1;}if(dp[i][j] > result) result = dp[i][j];}}return result;}
};

 

總結

自己实现过程中遇到哪些困难

今天第一次做遞增子序列的題目,一開始先看了題解,後面就是一開始的題目轉換思路,以及最長重複子数組則是用畫圖的方式推出解法。

今日收获,记录一下自己的学习时长

今天大概學了2hr,主要是理解子序列的做法該怎麼做。

相關資料

● 今日学习的文章链接和视频链接

300.最长递增子序列

视频讲解:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列_哔哩哔哩_bilibili

https://programmercarl.com/0300.最长上升子序列.html

674. 最长连续递增序列

视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列_哔哩哔哩_bilibili

https://programmercarl.com/0674.最长连续递增序列.html

718. 最长重复子数组

视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组_哔哩哔哩_bilibili

https://programmercarl.com/0718.最长重复子数组.html

这篇关于代碼隨想錄算法訓練營|第五十四天|300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组。刷题心得(c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/318947

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

vue如何监听对象或者数组某个属性的变化详解

《vue如何监听对象或者数组某个属性的变化详解》这篇文章主要给大家介绍了关于vue如何监听对象或者数组某个属性的变化,在Vue.js中可以通过watch监听属性变化并动态修改其他属性的值,watch通... 目录前言用watch监听深度监听使用计算属性watch和计算属性的区别在vue 3中使用watchE

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第