论文笔记(图像篡改检测_CVPRW2019)(二):RRU-Net: The Ringed Residual U-Net for Image Splicing Forgery Detection

本文主要是介绍论文笔记(图像篡改检测_CVPRW2019)(二):RRU-Net: The Ringed Residual U-Net for Image Splicing Forgery Detection,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:http://openaccess.thecvf.com/content_CVPRW_2019/html/CV-COPS/Bi_RRU-Net_The_Ringed_Residual_U-Net_for_Image_Splicing_Forgery_Detection_CVPRW_2019_paper.html

论文中,作者提出了一个用于拼接检测的环形残差网络。此网络是一个端到端的image essence attribute segmentation network,没有额外的预处理或后处理操作。这个RRU-Net的核心思想是强化CNN的学习方式。在此网络中包含residual propagation和residual feedback,residual propagation主要用于解决深度网络中梯度退化问题;residual feedback使篡改区域和非篡改区域的差异对比更加明显。

Motivation:

作者认为传统的基于CNN的方法使用image patch作为网络的输入,可能会丢失掉许多上下文信息,这会造成一些错误的预测。当网络的层数加深时,梯度退化问题会出现而且特征之间的可辨别性会变弱,这也使检测更加困难。

针对上述这些问题,作者提出了一个环形残差U-Net。这是一个端到端的图像分割网络,独立于人类视觉系统,可以直接定位篡改区域。更进一步,该网络通过充分利用contextual spatial information可以有效减少误预测。该网络可以有效加强CNN的学习方式并且避免随着网络的加深而出现的梯度退化问题。

How and Why:

之前基于U-net的检测方法,虽然U-net网络各层可以提取出之间一些相对shallow discriminative features,但只有U-net结构两侧的相互作用,仍然不足以充分确定拼接区域。

1.Residual Propagation

image essence attribute之间的差异是拼接检测的基础,而梯度退化现象会对此造成影响,从而使误检率上升。在这里,作者借鉴了Resnet中的shortcut在U-net中引入了这种连接方式,building block如下图所示:

                                              

                                                                       

如上图中,一个block中包含两个卷积层,最后接一个Relu激活函数。是一个线性变换,使前后两项维度相匹配。是通过shortcut连接和逐元素相加实现的。

作者认为这种残差传播过程与人脑的recall机制十分相像。如当一个人学习新知识时可能会忘记之前的旧知识,这时就需要recall机制帮助我们唤起对旧知识的记忆。

2.Residual feedback

作者认为如果可以将篡改区域和非篡改区域之间的差异进一步放大的话,对于拼接检测十分有帮助。在RGN-N一文中,zhou使用SRM来进一步放大差异,但有一个缺点就是:篡改区域和非篡改区域来自相同的brand或model时,由于二者具有相同的noise分布,SRM filter的帮助将非常小。

为了解决这一个问题,作者提出了residual feedback来加强CNN的学习能力,这是一个动态的学习方法,而且不仅仅关注一个或几个特定的图像属性。更进一步,作者设计了一个attention机制,然后将其加在residual feedback上从而更加关注于输入信息中可辨别的特征。在这个attention机制中,作者选择了一个简单的带有sigmoid激活函数的gating mechanism来学习可辨别特征通道之间的非线性关系(同时避免特征扩散),然后将sigmoid的输出与输入信息相加去放大在篡改区域与非篡改区域之间的image essence attributes之间的差异。Residual feedback block的结构如下:

                                                         

                                                                               

G是一个线性映射,用来改变的维度,s表示sigmoid激活函数。

作者认为residual feedback与人脑的consolidation机制有些类似,consolidate我们已经获得的知识时也可以获得新的信息。

作者采用residual feedback放大特征之间的差异也可以看做是对负标签特征的一种抑制;此外这种连接有利于加速模型的收敛。

3.Ringed Residual Structure and Network Architectures

论文提出的RRU-net整体框架图如上。总体来说,环形残残差结构使网络提取出的image essence attribute特征更加明显。

结论 or 下一步:

Pixel level:

Image level:

                                

 

 

这篇关于论文笔记(图像篡改检测_CVPRW2019)(二):RRU-Net: The Ringed Residual U-Net for Image Splicing Forgery Detection的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317677

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

2、PF-Net点云补全

2、PF-Net 点云补全 PF-Net论文链接:PF-Net PF-Net (Point Fractal Network for 3D Point Cloud Completion)是一种专门为三维点云补全设计的深度学习模型。点云补全实际上和图片补全是一个逻辑,都是采用GAN模型的思想来进行补全,在图片补全中,将部分像素点删除并且标记,然后卷积特征提取预测、判别器判别,来训练模型,生成的像

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景