使用DMAD(Learning Efficient GANs using Differentiable Masks and co-Attention Distillation)训练并测试自己的数据

本文主要是介绍使用DMAD(Learning Efficient GANs using Differentiable Masks and co-Attention Distillation)训练并测试自己的数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  论文:Learning Efficient GANs using Differentiable Masks and co-Attention Distillation


  代码:DMAD


  最近在做毕设,翻GitHub时看到原作者的repo,就尝试拿来跑一下自己的数据。结果一上来就报错(除了一些通用性比较高的repo外,很多都会遇到这种问题),解决了半天的环境问题,遇到下面这个错误:


/home/wlw19/miniconda3/lib/python3.8/site-packages/torchvision/transforms/transforms.py:257: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.warnings.warn(
/home/wlw19/miniconda3/lib/python3.8/site-packages/torchvision/models/inception.py:80: FutureWarning: The default weight initialization of inception_v3 will be changed in future releases of torchvision. If you wish to keep the old behavior (which leads to long initialization times due to scipy/scipy#11299), please set init_weights=True.warnings.warn('The default weight initialization of inception_v3 will be changed in future releases of '
Traceback (most recent call last):File "train.py", line 278, in <module>test(model, opt, logger, total_iters, best_AtoB_fid, best_BtoA_fid, best_AtoB_epoch,File "train.py", line 173, in testfid = test_pix2pix_fid(model, copy.copy(opt))File "train.py", line 92, in test_pix2pix_fidfid = get_fid(list(fake_B.values()), inception_model, npz, model.device, opt.batch_size)File "/media/wlw19/Elements/415_experiments/WH/code/DMAD-master/metric/__init__.py", line 9, in get_fidm1, s1 = npz['mu'], npz['sigma']File "/home/wlw19/.local/lib/python3.8/site-packages/numpy/lib/npyio.py", line 259, in __getitem__raise KeyError("%s is not a file in the archive" % key)
KeyError: 'mu is not a file in the archive'

  刚开始我没有看源码,对这个错误不明所以,看了后才知道:原作者是一边训练数据、训练一次后就测试FID,并把FID值最低的模型权重的epoch数、FID值都保存下来,报错代码的m2, s1就是用来测试FID的。但我用自己的数据所生成的npz文件没有这两个标签,所以报错。(我写了个脚本,测了一下自己数据生成的 npz ,只有一个vol标签)


  反正,报错信息是与计算FID有关的,那我换种方式计算FID就行了。正好源码的 metric 文件夹下 fid_score.py就是用来计算FID的,而且提供了图片路径作为参数计算FID的函数 calculate_fid_given_paths。那么,直接把train.py相应的代码注释掉,换成calculate_fid_given_paths来计算FID就可以了。


  训练、测试跑完后,发现这个repo的pix2pix并不适合我的数据,弃用。如图1所示,Attention 1和 Attention 2是我自己的方法。



图 1 Epoch对比

  数据集的结构与pix2pix的一样,如图2所示。



图 2 数据目录结构

  简单修改使之可以跑自己的数据:GitHub链接


这篇关于使用DMAD(Learning Efficient GANs using Differentiable Masks and co-Attention Distillation)训练并测试自己的数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314725

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取