使用DMAD(Learning Efficient GANs using Differentiable Masks and co-Attention Distillation)训练并测试自己的数据

本文主要是介绍使用DMAD(Learning Efficient GANs using Differentiable Masks and co-Attention Distillation)训练并测试自己的数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  论文:Learning Efficient GANs using Differentiable Masks and co-Attention Distillation


  代码:DMAD


  最近在做毕设,翻GitHub时看到原作者的repo,就尝试拿来跑一下自己的数据。结果一上来就报错(除了一些通用性比较高的repo外,很多都会遇到这种问题),解决了半天的环境问题,遇到下面这个错误:


/home/wlw19/miniconda3/lib/python3.8/site-packages/torchvision/transforms/transforms.py:257: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum.warnings.warn(
/home/wlw19/miniconda3/lib/python3.8/site-packages/torchvision/models/inception.py:80: FutureWarning: The default weight initialization of inception_v3 will be changed in future releases of torchvision. If you wish to keep the old behavior (which leads to long initialization times due to scipy/scipy#11299), please set init_weights=True.warnings.warn('The default weight initialization of inception_v3 will be changed in future releases of '
Traceback (most recent call last):File "train.py", line 278, in <module>test(model, opt, logger, total_iters, best_AtoB_fid, best_BtoA_fid, best_AtoB_epoch,File "train.py", line 173, in testfid = test_pix2pix_fid(model, copy.copy(opt))File "train.py", line 92, in test_pix2pix_fidfid = get_fid(list(fake_B.values()), inception_model, npz, model.device, opt.batch_size)File "/media/wlw19/Elements/415_experiments/WH/code/DMAD-master/metric/__init__.py", line 9, in get_fidm1, s1 = npz['mu'], npz['sigma']File "/home/wlw19/.local/lib/python3.8/site-packages/numpy/lib/npyio.py", line 259, in __getitem__raise KeyError("%s is not a file in the archive" % key)
KeyError: 'mu is not a file in the archive'

  刚开始我没有看源码,对这个错误不明所以,看了后才知道:原作者是一边训练数据、训练一次后就测试FID,并把FID值最低的模型权重的epoch数、FID值都保存下来,报错代码的m2, s1就是用来测试FID的。但我用自己的数据所生成的npz文件没有这两个标签,所以报错。(我写了个脚本,测了一下自己数据生成的 npz ,只有一个vol标签)


  反正,报错信息是与计算FID有关的,那我换种方式计算FID就行了。正好源码的 metric 文件夹下 fid_score.py就是用来计算FID的,而且提供了图片路径作为参数计算FID的函数 calculate_fid_given_paths。那么,直接把train.py相应的代码注释掉,换成calculate_fid_given_paths来计算FID就可以了。


  训练、测试跑完后,发现这个repo的pix2pix并不适合我的数据,弃用。如图1所示,Attention 1和 Attention 2是我自己的方法。



图 1 Epoch对比

  数据集的结构与pix2pix的一样,如图2所示。



图 2 数据目录结构

  简单修改使之可以跑自己的数据:GitHub链接


这篇关于使用DMAD(Learning Efficient GANs using Differentiable Masks and co-Attention Distillation)训练并测试自己的数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314725

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件