【机器学习】逻辑斯谛回归模型实现

2023-10-31 08:30

本文主要是介绍【机器学习】逻辑斯谛回归模型实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 数据准备
  • 逻辑斯谛回归模型
  • 模型参数估计
  • 总结
  • 参考


数据准备

本文实现的是二项逻辑斯谛回归模型,因此使用的是处理过后的两类别数据 mnist_binary.csv,表中对原手写数据中0~4取作负类 -1,将5~9取作正类 +1。

另根据逻辑斯谛回归模型按条件概率分布定义:
P ( Y = 1 ∣ x ) = e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) P(Y=1|x)=\frac{exp(w\cdot x)}{1 + exp(w\cdot x)} P(Y=1∣x)=1+exp(wx)exp(wx)
P ( Y = 0 ∣ x ) = 1 1 + e x p ( w ⋅ x ) P(Y=0|x)=\frac{1}{1 + exp(w\cdot x)} P(Y=0∣x)=1+exp(wx)1

Y的取值应为0,1,因此需要将表中的-1类转换为0后再进行训练;此外由于要计算指数函数,特征取值过多会导致指数函数计算过程中的溢出,因此还需要将图像数据进行二值化操作。此部分直接在代码中完成,就不生成相应的数据集了。


逻辑斯谛回归模型

上面提到的逻辑斯谛回归模型的条件概率分布定义,可以看作是模型将线性函数 w ⋅ x w\cdot x wx通过其定义式转换为概率表现形式:
P ( Y = 1 ∣ x ) = e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) P(Y=1|x)=\frac{exp(w\cdot x)}{1 + exp(w\cdot x)} P(Y=1∣x)=1+exp(wx)exp(wx)

上式中表示事情发生的概率,在线性函数趋近于无穷大时,概率值越接近于1;线性函数趋近于负无穷时,概率值就接近于0;函数图像如下所示,模型的临界点在线性函数为零时,条件概率值为0.5。
逻辑斯谛

逻辑斯谛回归模型也可以推广至多分类,见总结部分。


模型参数估计

设上述逻辑斯谛回归模型可改写为如下格式:

P ( Y = 1 ∣ x ) = π ( x ) , P ( Y = 0 ∣ x ) = 1 − π ( x ) P(Y=1|x)=\pi(x),P(Y=0|x)=1-\pi(x) P(Y=1∣x)=π(x)P(Y=0∣x)=1π(x)

其似然函数为:

∏ i = 1 N [ π ( x i ) ] y i [ 1 − π ( x i ) ] 1 − y i \prod_{i=1}^{N}[\pi(x_i)]^{y_i}[1-\pi(x_i)]^{1-y_i} i=1N[π(xi)]yi[1π(xi)]1yi

对数似然函数:
L ( w ) = ∑ i = 1 N [ y i l o g π ( x i ) + ( 1 − y i ) l o g ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i l o g π ( x i ) 1 − π ( x i ) + l o g ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i ( w ⋅ x i ) − l o g ( 1 + e x p ( w ⋅ x i ) ) ] = y i ( w ⋅ x ) − l o g ( 1 + e x p ( w ⋅ x ) ) \begin{aligned} L(w) &= \sum_{i=1}^N[y_ilog\pi(x_i) + (1 - y_i)log(1 - \pi(x_i))] \\ &=\sum_{i=1}^N[y_ilog\frac{\pi(x_i)}{1 - \pi(x_i)} + log(1 - \pi(x_i))] \\ &=\sum_{i=1}^N[y_i(w\cdot x_i) - log(1 + exp(w\cdot x_i))] \\ &=y_i(w\cdot x) - log(1+exp(w\cdot x)) \end{aligned} L(w)=i=1N[yilogπ(xi)+(1yi)log(1π(xi))]=i=1N[yilog1π(xi)π(xi)+log(1π(xi))]=i=1N[yi(wxi)log(1+exp(wxi))]=yi(wx)log(1+exp(wx))

利用随机梯度下降方法优化算法,以向量形式对权重进行求导:
∂ L ( w ) ∂ w = y i x − x ⋅ e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) = x [ y i − e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) ] \begin{aligned} \frac{\partial L(w)}{\partial w} &= y_ix - \frac{x\cdot exp(w\cdot x)}{1+exp(w\cdot x)} \\ &=x[y_i - \frac{exp(w\cdot x)}{1 + exp(w\cdot x)}] \end{aligned} wL(w)=yix1+exp(wx)xexp(wx)=x[yi1+exp(wx)exp(wx)]

每次迭代过程中更新权重参数:

w = w + α ∂ L ( w ) ∂ w w = w + \alpha\frac{\partial L(w)}{\partial w} w=w+αwL(w)


根据上述算法步骤,可以发现基于随机梯度下降法的二项逻辑斯谛回归和基于梯度下降法的感知机模型学习算法流程基本一致,区别在于参数步骤的更新方式。另外在判别过程中:感知机采用符号函数Sgin,逻辑斯谛回归采用逻辑斯谛分布Sigmoid进行计算,可参考感知机模型学习原始算法。

具体实现代码如下:

# @Author: phd
# @Date: 2019-08-18
# @Site: github.com/phdsky
# @Description: NULLimport time
import logging
import numpy as np
import pandas as pdfrom sklearn.model_selection import train_test_split
from sklearn.preprocessing import Binarizerdef log(func):def wrapper(*args, **kwargs):start_time = time.time()ret = func(*args, **kwargs)end_time = time.time()logging.debug('%s() cost %s seconds' % (func.__name__, end_time - start_time))return retreturn wrapperdef calc_accuracy(y_pred, y_truth):assert len(y_pred) == len(y_truth)n = len(y_pred)hit_count = 0for i in range(0, n):if y_pred[i] == y_truth[i]:hit_count += 1print("Predicting accuracy %f" % (hit_count / n))class LogisticRegression(object):def __init__(self, w, b, learning_rate, max_epoch, learning_period, learning_ratio):self.weight = wself.bias = bself.lr_rate = learning_rateself.max_epoch = max_epochself.lr_period = learning_periodself.lr_ratio = learning_ratiodef calculate(self, feature):# wx = sum([self.weight[j] * feature[j] for j in range(len(self.weight))])wx = np.dot(self.weight.transpose(), feature)exp_wx = np.exp(wx)predicted = 0 if (1 / (1 + exp_wx)) > 0.5 else 1return predicted, exp_wx@logdef train(self, X_train, y_train):# Fuse weight with biasself.weight = np.full((len(X_train[0]), 1), self.weight, dtype=float)self.weight = np.row_stack((self.weight, self.bias))epoch = 0while epoch < self.max_epoch:hit_count = 0data_count = len(X_train)for i in range(data_count):feature = X_train[i].reshape([len(X_train[i]), 1])feature = np.row_stack((feature, 1))label = y_train[i]predicted, exp_wx = self.calculate(feature)if predicted == label:hit_count += 1continue# for k in range(len(self.weight)):#     self.weight[k] += self.lr_rate * (label*feature[k] - ((feature[k] * exp_wx) / (1 + exp_wx)))self.weight += self.lr_rate * feature * (label - (exp_wx / (1 + exp_wx)))epoch += 1print("\rEpoch %d, lr_rate=%f, Acc = %f" % (epoch, self.lr_rate, hit_count / data_count), end='')# Decay learning rateif epoch % self.lr_period == 0:self.lr_rate /= self.lr_ratio# Stop trainingif self.lr_rate <= 1e-6:print("\nLearning rate is too low, Early stopping...\n")break@logdef predict(self, X_test):n = len(X_test)predict_label = np.full(n, -1)for i in range(0, n):to_predict = X_test[i].reshape([len(X_test[i]), 1])vec_predict = np.row_stack((to_predict, 1))predict_label[i], _ = self.calculate(vec_predict)return predict_labelif __name__ == "__main__":logger = logging.getLogger()logger.setLevel(logging.DEBUG)mnist_data = pd.read_csv("../data/mnist_binary.csv")mnist_values = mnist_data.valuesimages = mnist_values[::, 1::]labels = mnist_values[::, 0]X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.33, random_state=42)# Handle all -1 in y_train to 0y_train = y_train * (y_train == 1)y_test = y_test * (y_test == 1)# Binary the image to avoid predict_probability gets 0binarizer_train = Binarizer(threshold=127).fit(X_train)X_train_binary = binarizer_train.transform(X_train)binarizer_test = Binarizer(threshold=127).fit(X_test)X_test_binary = binarizer_test.transform(X_test)lr = LogisticRegression(w=0, b=1, learning_rate=0.001, max_epoch=100,learning_period=10, learning_ratio=3)print("Logistic regression training...")lr.train(X_train=X_train_binary, y_train=y_train)print("\nTraining done...")print("Testing on %d samples..." % len(X_test))y_predicted = lr.predict(X_test=X_test_binary)calc_accuracy(y_pred=y_predicted, y_truth=y_test)

代码输出

/Users/phd/Softwares/anaconda3/bin/python /Users/phd/Desktop/ML/logistic_regression/logistic_regression.py
Logistic regression training...
Epoch 70, lr_rate=0.000001, Acc = 0.818479
Learning rate is too low, Early stopping...Training done...
Testing on 13860 samples...
DEBUG:root:train() cost 38.08758902549744 seconds
Predicting accuracy 0.831097
DEBUG:root:predict() cost 0.2131938934326172 secondsProcess finished with exit code 0

从结果可以看出,在图像二值化后逻辑斯谛算法的训练和测试精度都在80%+,算法效果较好;预测结果优于直接使用原始数据的感知机模型。


总结

  1. 逻辑斯谛回归模型是一种分类模型
  2. 逻辑斯谛回归是由输入线性函数表示的输出对数几率模型;其模型定义由如下条件概率分布表示:(将二项推广为多项模型)

{ P ( Y = k ∣ x ) = e x p ( w k ⋅ x ) 1 + ∑ k = 1 K − 1 e x p ( w k ⋅ x ) , k = 1 , 2 , . . . , K − 1 P ( Y = K ∣ x ) = 1 1 + ∑ k = 1 K − 1 e x p ( w k ⋅ x ) \left\{ \begin{aligned} P(Y=k|x) &= \frac{exp(w_k\cdot x)}{1 + \sum\limits_{k=1}^{K-1}exp(w_k\cdot x)}, k=1,2,...,K-1 \\ P(Y=K|x) &= \frac{1}{1 + \sum\limits_{k=1}^{K-1}exp(w_k\cdot x)} \end{aligned} \right. P(Y=kx)P(Y=Kx)=1+k=1K1exp(wkx)exp(wkx),k=1,2,...,K1=1+k=1K1exp(wkx)1


参考

  1. 《统计学习方法》

这篇关于【机器学习】逻辑斯谛回归模型实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314073

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand