【Python图像处理局部放大】输入图像,选择两处不同的区域进行放大操作,然后将原始图像、处理后的两个区域以及标记合成新图像进行展示

本文主要是介绍【Python图像处理局部放大】输入图像,选择两处不同的区域进行放大操作,然后将原始图像、处理后的两个区域以及标记合成新图像进行展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NeRF-w 渲染后的图像效果的定性对比,对局部放大以观察细节效果。如下

对单张渲染后的图像,选择指定区域并进行放大操作,然后将原始图像、处理后的两个区域以及标记连线的新图像,如下图

代码

from PIL import Image, ImageDraw# 读取并放大图片的指定区域
def process_image(image_path):# 打开图像img = Image.open(image_path)# 获取图像的宽度和高度width, height = img.size# 确定选中区域1的大小(假设为原始高度的三分之一)size1 = height // 3half_size1 = size1 // 2# 确定选中区域2的大小(假设为原始高度的五分之一)size2 = height // 5half_size2 = size2 // 2# 确定区域1的坐标(右上方)box1 = (max(0, width // 2), max(0, height // 2 - size1), min(width, width // 2 + size1), min(height, height // 2))# 确定区域2的坐标(左下方)box2 = (max(0, width // 2 - size2), max(0, height // 2), min(width, width // 2), min(height, height // 2 + size2))# 复制选定的区域并放大region1 = img.crop(box1)region1 = region1.resize((region1.width * 2, region1.height * 2))region2 = img.crop(box2)region2 = region2.resize((region1.width, region1.height))# 在原始图像上绘制矩形框draw = ImageDraw.Draw(img)draw.rectangle(box1, outline='red', width=3)draw.rectangle(box2, outline='blue', width=3)# 在子图上绘制矩形框draw1 = ImageDraw.Draw(region1)draw2 = ImageDraw.Draw(region2)draw1.rectangle((0, 0, region1.width, region1.height), outline='red', width=3)draw2.rectangle((0, 0, region2.width, region2.height), outline='blue', width=3)# 创建一个新的空白图像,大小为原始图像的宽度,高度为原始图像高度加上最大高度的子图以及一些间隙# new_height = height + max(region1.height, region2.height) + 30  # 加上一些间隙new_height = height + max(region1.height, region2.height)  # 加上一些间隙new_img = Image.new('RGB', (width, new_height))# 计算子图位置offset = 10  # 两个子图之间的间隙new_img.paste(img, (0, 0))new_img.paste(region1, (width // 2, height + offset))new_img.paste(region2, (0, height + offset))# 获取两个矩形框的中心点box1_center = ((box1[0] + box1[2]) // 2, box1[3])  # 取框下中心box2_center = ((box2[0] + box2[2]) // 2, box2[3])  # 取框下中心region1_center = (width // 2 + region1.width // 2, height + offset)  # 取子图上中心region2_center = (region2.width // 2, height + offset )  # 取子图下中心# 在原图区域框的下面和子图框的上面绘制红色和蓝色的连线draw_line = ImageDraw.Draw(new_img)draw_line.line([box1_center, region1_center], fill='red', width=2)draw_line.line([box2_center, region2_center], fill='blue', width=2)return new_img# 读取5张图片并处理
image_paths = ["./test_images/001.png", "./test_images/002.png", "./test_images/003.png", "./test_images/004.png", "./test_images/005.png"]for i, path in enumerate(image_paths):new_image = process_image(path)new_image.save(f"./test_images/new_image_{i + 1}.jpg")  # 保存新的图片

        这段代码是一个Python脚本,用于处理输入的图像文件,选择特定区域并对其进行放大操作,然后将原始图像、处理后的两个区域进行标记后的新图像保存到文件中。以下是代码的总结:

  1. 处理图像功能

    • 打开并读取图像。
    • 确定两个指定区域的位置和大小。
    • 选取指定区域并放大。
    • 在原始图像和子图上绘制矩形框。
  2. 创建新图像

    • 创建一张新的空白图像。
    • 将原始图像和两个处理后的区域放置在新图像中,并绘制连接这些区域的线条。
  3. 处理多张图像

    • 循环处理图像列表中的每张图像。
    • 保存处理后的图像。

总结:

该代码用于处理图像中的特定区域并放大,并在新图像上显示原始图像、处理后的两个区域,以及用颜色标记连接这些区域。

注意:

  • 在处理过程中,子图的位置被计算,然后这些子图被粘贴到新图像中。
  • 连接线的位置是根据处理后的区域和原始图像区域的中心点进行绘制。

对以上代码进行改进,由鼠标选中需要放大的两个图像区域 。

这篇关于【Python图像处理局部放大】输入图像,选择两处不同的区域进行放大操作,然后将原始图像、处理后的两个区域以及标记合成新图像进行展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/313004

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结