NNDL 实验六 卷积神经网络(2)基础算子

2023-10-30 20:50

本文主要是介绍NNDL 实验六 卷积神经网络(2)基础算子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

5.2 卷积神经网络的基础算子

我们先实现卷积网络的两个基础算子:卷积层算子和汇聚层算子。

5.2.1 卷积算子
卷积层是指用卷积操作来实现神经网络中一层。

为了提取不同种类的特征,通常会使用多个卷积核一起进行特征提取。

5.2.1.1 多通道卷积


5.2.1.2 多通道卷积层算子
1. 多通道卷积卷积层的代码实现

2. Pytorch:torch.nn.Conv2d()代码实现

3. 比较自定义算子和框架中的算子
 

import torch
import torch.nn as nnclass Conv2D(nn.Module):def __init__(self, in_channels, out_channels,kernel_size,stride=1, padding=0,):super(Conv2D, self).__init__()# 使用'paddle.create_parameter'创建卷积核# 使用'paddle.ParamAttr'进行参数初始化weight_attr=torch.ones(out_channels,in_channels,kernel_size,kernel_size);bias_attr=torch.ones(out_channels,1);nn.init.constant_(weight_attr,1.0)nn.init.constant_(bias_attr, 0.0)self.weight = nn.Parameter(weight_attr)self.bias = nn.Parameter(bias_attr)# 步长self.stride = stride# 零填充self.padding = padding# 输入通道数self.in_channels = in_channels# 输出通道数self.out_channels = out_channelsdef single_forward(self, X, weight):# 零填充new_X = torch.zeros([X.shape[0], X.shape[1] + 2 * self.padding, X.shape[2] + 2 * self.padding])new_X[:, self.padding:X.shape[1] + self.padding, self.padding:X.shape[2] + self.padding] = Xu, v = weight.shapeoutput_w = (new_X.shape[1] - u) // self.stride+1output_h = (new_X.shape[2] - v) // self.stride+1output = torch.zeros([X.shape[0], output_w, output_h])for i in range(0, output.shape[1]):for j in range(0, output.shape[2]):output[:, i, j] = torch.sum(new_X[:, self.stride * i:self.stride * i + u, self.stride * j:self.stride * j + v] * weight,axis=[1, 2])return outputdef forward(self, inputs):"""输入:- inputs:输入矩阵,shape=[B, D, M, N]- weights:P组二维卷积核,shape=[P, D, U, V]- bias:P个偏置,shape=[P, 1]"""feature_maps = []# 进行多次多输入通道卷积运算p = 0for w, b in zip(self.weight, self.bias):  # P个(w,b),每次计算一个特征图Zpmulti_outs = []# 循环计算每个输入特征图对应的卷积结果for i in range(self.in_channels):single = self.single_forward(inputs[:, i, :, :], w[i])multi_outs.append(single)# print("Conv2D in_channels:",self.in_channels,"i:",i,"single:",single.shape)# 将所有卷积结果相加feature_map = torch.sum(torch.stack(multi_outs),0) + b  # Zpfeature_maps.append(feature_map)# print("Conv2D out_channels:",self.out_channels, "p:",p,"feature_map:",feature_map.shape)p += 1# 将所有Zp进行堆叠out = torch.stack(feature_maps, 1)return outinputs = torch.tensor([[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]])
conv2d = Conv2D(in_channels=2, out_channels=3, kernel_size=2)
print("inputs shape:", inputs.shape)
outputs = conv2d(inputs)
print("Conv2D outputs shape:", outputs.shape)# 比较与paddle API运算结果
conv2d_paddle = nn.Conv2d(in_channels=2, out_channels=3,kernel_size=2,)
outputs_paddle = conv2d_paddle(inputs)
# 自定义算子运算结果
print('Conv2D outputs:', outputs)
# paddle API运算结果
print('nn.Conv2D outputs:', outputs_paddle)
inputs shape: torch.Size([1, 2, 3, 3])
Conv2D outputs shape: torch.Size([1, 3, 2, 2])
Conv2D outputs: tensor([[[[20., 28.],[44., 52.]],[[20., 28.],[44., 52.]],[[20., 28.],[44., 52.]]]], grad_fn=<StackBackward>)nn.Conv2D outputs: tensor([[[[-2.0249, -2.6304],[-3.8416, -4.4472]],[[-0.2048, -0.6759],[-1.6180, -2.0890]],[[ 0.8913,  1.2849],[ 2.0720,  2.4656]]]], grad_fn=<ThnnConv2DBackward>)Process finished with exit code 0

pytorch框架中的卷积核参数与自定义中的卷积核参数不同,导致输出结果与自定义算子不同

卷积核参数如下:

Parameter containing:
tensor([[[[ 0.0776, -0.2293],[-0.0970,  0.3162]],[[ 0.0123,  0.0400],[-0.2898,  0.1585]]],[[[ 0.3282,  0.0408],[-0.0139, -0.2561]],[[ 0.0024, -0.0025],[-0.2003, -0.1251]]],[[[ 0.2519, -0.2914],[ 0.1964,  0.2667]],[[-0.0483,  0.0835],[-0.0808,  0.3366]]]], requires_grad=True)Process finished with exit code 0

 5.2.1.3 卷积算子的参数量和计算量

可以想像,随着隐藏层神经元数量的变多以及层数的加深,使用全连接前馈网络处理图像数据时,参数量会急剧增加。

如果使用卷积进行图像处理,当卷积核为3×33×3时,参数量仅为99,相较于全连接前馈网络,参数量少了非常多。

5.2.2 汇聚层算子

汇聚层的作用是进行特征选择,降低特征数量,从而减少参数数量。

由于汇聚之后特征图会变得更小,如果后面连接的是全连接层,可以有效地减小神经元的个数,节省存储空间并提高计算效率。

常用的汇聚方法有两种,分别是:平均汇聚、最大汇聚。

1. 代码实现一个简单的汇聚层。 

2. torch.nn.MaxPool2d();torch.nn.avg_pool2d()代码实现

3. 比较自定义算子框架中的算子


class Pool2D(nn.Module):def __init__(self, size=(2, 2), mode='max', stride=1):super(Pool2D, self).__init__()# 汇聚方式self.mode = modeself.h, self.w = sizeself.stride = stridedef forward(self, x):output_w = (x.shape[2] - self.w) // self.stride + 1output_h = (x.shape[3] - self.h) // self.stride + 1output = torch.zeros([x.shape[0], x.shape[1], output_w, output_h])# 汇聚for i in range(output.shape[2]):for j in range(output.shape[3]):# 最大汇聚if self.mode == 'max':output[:, :, i, j] =\x[:, :, self.stride * i:self.stride * i + self.w, self.stride * j:self.stride * j + self.h]\.max(dim=2).values.max(dim=2).values# 平均汇聚elif self.mode == 'avg':output[:, :, i, j] = \x[:, :, self.stride * i:self.stride * i + self.w, self.stride * j:self.stride * j + self.h]\.mean(dim=[2, 3])return outputinputs = torch.tensor([[[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.]]]])
pool2d = Pool2D(stride=2)
outputs = pool2d(inputs)
print("input: {}, \noutput: {}".format(inputs.shape, outputs.shape))# 比较Maxpool2D与paddle API运算结果
maxpool2d_paddle = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
outputs_paddle = maxpool2d_paddle(inputs)
# 自定义算子运算结果
print('Maxpool2D outputs:', outputs)
# paddle API运算结果
print('nn.Maxpool2D outputs:', outputs_paddle)# 比较Avgpool2D与paddle API运算结果
avgpool2d_paddle = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
outputs_paddle = avgpool2d_paddle(inputs)
pool2d = Pool2D(mode='avg', stride=2)
outputs = pool2d(inputs)
# 自定义算子运算结果
print('Avgpool2D outputs:', outputs)
# paddle API运算结果
print('nn.Avgpool2D outputs:', outputs_paddle)
input: torch.Size([1, 1, 4, 4]), 
output: torch.Size([1, 1, 2, 2])
Maxpool2D outputs: tensor([[[[ 6.,  8.],[14., 16.]]]])
nn.Maxpool2D outputs: tensor([[[[ 6.,  8.],[14., 16.]]]])
Avgpool2D outputs: tensor([[[[ 3.5000,  5.5000],[11.5000, 13.5000]]]])
nn.Avgpool2D outputs: tensor([[[[ 3.5000,  5.5000],[11.5000, 13.5000]]]])

自定义算子和框架算子参数相同。

汇聚层的参数量和计算量

由于汇聚层中没有参数,所以参数量为0;

最大汇聚中,没有乘加运算,所以计算量为0,

平均汇聚中,输出特征图上每个点都对应了一次求平均运算。

总结:这次试验体会了自定义算子的流程,了解了池化和卷积操作,了解了框架算子的使用方法,以及与自定义算子的区别。

这篇关于NNDL 实验六 卷积神经网络(2)基础算子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310510

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)