基于径向基神经网络RBF的图像跟踪,基于RBF的行人跟踪,基于RBF的视频跟踪

2023-10-30 13:45

本文主要是介绍基于径向基神经网络RBF的图像跟踪,基于RBF的行人跟踪,基于RBF的视频跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

完整代码和数据下载链接:基于径向基神经网络rbf的图像跟踪,基于RBF的人像跟踪(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88218179
RBF的详细原理
RBF的定义
RBF理论
易错及常见问题
RBF应用实例,基于rbf的空调功率预测
代码
结果分析
展望

RBF的详细原理

RBF的定义

径向基函数(Radical Basis Function,RBF)方法是Powell在1985年提出的。所谓径向基函数,其实就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心c之间欧氏距离的单调函数,可记作k(||x-c||),其作用往往是局部的,即当x远离c时函数取值很小。例如高斯径向基函数:

RBF理论

RBF神经网络算法是由三层结构组成,输入层至隐层为非线性的空间变换,一般选用径向基函数的高斯函数进行运算;从隐层至输出层为线性空间变换,即矩阵与矩阵之间的变换。
rbf神经网络原理是用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。
RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。
简而言之,RBF神经网络其实就是,具有不同激活函数和应用方向的前馈网络。

RBF应用实例

基于RBF的图像跟踪的MATLAB代码

%% I. 清空环境变量
clc
clear
close all
%% II. 训练集/测试集产生
%%
load maydata.mat
num(15,61)=13285;
m=45;
n = randperm(length(num));
input_train=num(n,1:60)‘;%训练数据的输入数据
output_train=num(n,61)’;%训练数据的输出数据
input_test=num((1:end),1:60)‘;%测试数据的输入数据
output_test=num((1:end),61)’; %测试数据的输出数据

%选连样本输入输出数据归一化
[inputn_test,inputps]=mapminmax(input_test,-1,1);%训练数据的输入数据的归一化
% [inputn,inputps]=mapminmax(input_train,0,1);%训练数据的输入数据的归一化
% inputn_test=mapminmax(‘apply’,input_test,inputps);
inputn=mapminmax(‘apply’,input_train,inputps);

[outputn,outputps]=mapminmax(output_train,0,1);%训练数据的输出数据的归一化de

%% III. RBF神经网络创建及仿真测试
%%
% 1. 创建网络
net=newrb(inputn,outputn,0.0001,5,60);
% net.trainFcn=‘trainrp’;
%%
% inputn_test=mapminmax(‘apply’,input_test,inputps);
test_output1=sim(net,inputn_test); %$生成测试数据
test_output=mapminmax(‘reverse’,test_output1,outputps);
%% IV. 性能评价
figure(1)
plot(output_test(1,:),‘r-o’);%期望数据,即真实的数据画图,-代表实现,就是代表的标识
hold on
plot(test_output(1,:),‘b-*’);%预测数据,即rbf仿真出来的的数据画图,-代表实现,就是代表的标识
hold off
legend(‘实际数据’,‘预测输出’)%标签
title(‘RBF神经网络’,‘fontsize’,12)%标题 字体大小为12
ylabel(‘当日能耗’,‘fontsize’,12)%Y轴
xlabel(‘日期’,‘fontsize’,12)%X轴

set(gca,‘XTick’,[1 5:5:25])
set(gca,‘XTickLabel’,{‘9.15’,‘9.20’,‘9.25’,‘10.1’,‘10.6’,‘10.11’})

figure(2)
plot(output_test(1,:)-test_output(1,:),‘k-*’);%期望数据,即真实的数据画图,-代表实现,就是代表的标识

title(‘RBF神经网络’,‘fontsize’,12)%标题 字体大小为12
ylabel(‘误差’,‘fontsize’,12)%Y轴
xlabel(‘日期’,‘fontsize’,12)%X轴

set(gca,‘XTick’,[1 5:5:25])
set(gca,‘XTickLabel’,{‘9.15’,‘9.20’,‘9.25’,‘10.1’,‘10.6’,‘10.11’})

%
% net1.b{1}
% net1.iw{1,1}
% net1.b{2}
% net1.lw{2,1}

扩展

如果需要改进,欢迎扫描二维码联系

这篇关于基于径向基神经网络RBF的图像跟踪,基于RBF的行人跟踪,基于RBF的视频跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/308324

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

《x86汇编语言:从实模式到保护模式》视频来了

《x86汇编语言:从实模式到保护模式》视频来了 很多朋友留言,说我的专栏《x86汇编语言:从实模式到保护模式》写得很详细,还有的朋友希望我能写得更细,最好是覆盖全书的所有章节。 毕竟我不是作者,只有作者的解读才是最权威的。 当初我学习这本书的时候,只能靠自己摸索,网上搜不到什么好资源。 如果你正在学这本书或者汇编语言,那你有福气了。 本书作者李忠老师,以此书为蓝本,录制了全套视频。 试

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

基于树梅派的视频监控机器人Verybot

最近这段时间做了一个基于树梅派 ( raspberry pi ) 的视频监控机器人平台 Verybot ,现在打算把这个机器人的一些图片、视频、设计思路进行公开,并且希望跟大家一起研究相关的各种问题,下面是两张机器人的照片:         图片1:                   图片2                    这个平台的基本组成是:

PC与android平板通过浏览器监控Verybot的视频

下面这个视频是PC与android平板通过浏览器监控Verybot的视频:           http://v.youku.com/v_show/id_XNjYzNzYyMTIw.html

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的: