基于opencv和QT的瞳孔精确检测程序

2023-10-30 10:00

本文主要是介绍基于opencv和QT的瞳孔精确检测程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文为作者为毕业设计所写的瞳孔精确检测程序,转载请注明作者和出处http://blog.csdn.net/zyx1990412/article/details/51219076。

本篇博客是在作者的前两篇博客 《基于QTopencv的摄像头(本地图片)读取并输出程序》和《 基于opencvQT的人脸(人眼)检测程序》的基础上进行开发的。主要原理是:针对已经检测到的人眼区域图像,利用边缘检测和Hough变换实现瞳孔的精确检测。

首先建立一个图像处理类,对每一帧图像进行处理。

class ImgProcess
{private:Mat inimg;//输入图像Mat outimg;//输出结果Mat Leye;Mat Reye;Mat Leye_G;Mat Reye_G;CvRect drawing_box;public:vector<Vec3f> Lcircles;vector<Vec3f> Rcircles;ImgProcess(Mat image):inimg(image),drawing_box(cvRect(0, 0, 50, 20)){}void EyeDetect();//人眼检测Mat Outputimg();//输出结果void DivideEye();//分左右眼Mat OutLeye();//输出结果Mat OutReye();Mat EdgeDetect(Mat &edgeimg);//边缘检测void EyeEdge();//分别检测左右眼vector<Vec3f> Hough(Mat &midImage);//hough变换void FindCenter();//定位中心Mat PlotC(vector<Vec3f> circles,Mat &midImage);//画HOUGH变换的检测结果
};#endif // IMGPROCESS_H

1.检测人眼

    在图像处理时,首先利用上一篇博客所得到的人眼检测函数检测得到人眼区域。实现人眼检测的函数voidEyeDetect();

void ImgProcess::EyeDetect()
{detectAndDisplay( inimg,drawing_box );outimg=inimg;
}

其中的detectAndDisplay函数为:

void  detectAndDisplay( Mat &frame,CvRect &box )
{string face_cascade_name = "haarcascade_mcs_eyepair_big.xml";//导入已经训练完成的样本CascadeClassifier face_cascade;//建立分类器string window_name = "camera";if( !face_cascade.load( face_cascade_name ) ){printf("[error] no cascade\n");}std::vector<Rect> faces;//用于保存检测结果的向量Mat frame_gray;cvtColor( frame, frame_gray, CV_BGR2GRAY );//转换成灰度图equalizeHist( frame_gray, frame_gray );//直方图均值化face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );//用于检测人眼的函数//画方框for( int i = 0; i < faces.size(); i++ ){Point centera( faces[i].x, faces[i].y);Point centerb( faces[i].x + faces[i].width, faces[i].y + faces[i].height );rectangle(frame,centera,centerb,Scalar(255,0,0));box=faces[0];}//imshow( window_name, frame );
}

运行完人眼检测函数后,检测结果将在label上显示出来,如图一。需要说明的是,opencv自带的检测函数存在误检或者漏检的情况,即检测到多个人眼区域(多讲眉毛部分检测为人眼),或者检测不到人眼。所以函数将检测到的第一个向量放入drawing_box中;如果没有检测到,就不赋值。另外需要注意的是,在佩戴眼镜的情况下,检测效果不是十分明显。


图一

2左右眼图像分割

drawing_box是一个矩形数据结构,里面共有四个量,drawing_box.x和drawing_box.y分别是矩形框的x和y坐标,drawing_box.width和drawing_box.Height分别是矩形框的宽度和高度。检测到人眼区域后,利用voidDivideEye()函数将人眼区域分成左右眼两个区域,方便后续计算。其中leye_box表示左眼的矩形框,Leye表示左眼的图像,reye_box表示右眼的矩形框,Reye表示右眼的图像。

void ImgProcess::DivideEye()
{if (drawing_box.width>0){CvRect leye_box;leye_box.x=drawing_box.x+1;leye_box.y=drawing_box.y+1;leye_box.height=drawing_box.height-1;leye_box.width=floor(drawing_box.width/2)-1;CvRect reye_box;reye_box.x=leye_box.x+leye_box.width;reye_box.y=drawing_box.y+1;reye_box.height=drawing_box.height-1;reye_box.width=leye_box.width-1;Leye=inimg(leye_box);Reye=inimg(reye_box);
//    imshow("L",Leye);
//    imshow("R",Reye);}
}

3.图像边缘检测

    本文利用canny算法对图像进行边缘检测,canny算法的原理就不详细介绍了,大家可以自行查阅网上的资料,本文直接使用opencv自带的检测函数进行检测。单个图像的边缘检测ImgProcess::EdgeDetect:首先将图像由彩色图转换成灰度图,然后进行高斯平滑,接着进行直方图均值化,最后利用canny函数进行边缘检测。这几个函数的用法和参数设置网上都有介绍,其中canny函数最重要的是低阈值和高阈值的设置,本文的参数是通过多次测试得出的结果。参数的设置与光照和背景都有较大的关系,本文的参数适用于作者所在是环境(图一的背景),在其他环境下是否适用,还需要读者自行探索。

Mat ImgProcess::EdgeDetect(Mat &edgeimg)
{Mat edgeout;cvtColor(edgeimg,edgeimg,CV_BGR2GRAY);// 彩色图转换成灰度图GaussianBlur( edgeimg,edgeimg, Size(9, 9), 2, 2 );// 高斯平滑equalizeHist( edgeimg, edgeimg );//直方图均值化Canny(edgeimg,edgeout,100,200,3);//输入图像,输出图像,低阈值,高阈值,opencv建议是低阈值的3倍,内部sobel滤波器大小return edgeout;
}

然后建立一个函数对左右眼图片分别调用边缘检测函数

void ImgProcess::EyeEdge()
{Leye_G=EdgeDetect(Leye);   Reye_G=EdgeDetect(Reye);//imshow("L",Leye_G);//imshow("R",Reye_G);
}

检测结果如图二所示

图二

4.Hough变换检测圆心

    得到人眼区域的边缘图像后,就可以用Hough变换求瞳孔圆心,Hough变换的基本原理这里同样不作介绍,直接调用opencv自带的检测函数进行检测。

vector<Vec3f> ImgProcess::Hough(Mat &midImage)
{vector<Vec3f> circles;HoughCircles( midImage, circles, CV_HOUGH_GRADIENT,1.5, 5, 100, 20, drawing_box.height/4, drawing_box.height/3 );return circles;
}

http://www.tuicool.com/articles/Mn2EBn这篇文章里有详细Hough变换的原理与函数的使用方法,下面是引用的这篇文章里对函数参数的解释。

voidHoughCircles(InputArray image,OutputArray circles,int method,doubledp,double minDist,double param1=100,doubleparam2=100,int minRadius=0,int maxRadius=0 )

·       第一个参数,InputArray类型的image,输入图像,即源图像,需为8位的灰度单通道图像。第二个参数,InputArray类型的circles,经过调用HoughCircles函数后存储了检测到的圆的输出矢量,每个矢量由包含了3个元素的浮点矢量(x, y, radius)表示。

·       第三个参数,int类型的method,即使用的检测方法,目前OpenCV中就霍夫梯度法一种可以使用,它的标识符为CV_HOUGH_GRADIENT,在此参数处填这个标识符即可。

·       第四个参数,double类型的dp,累加器图像的分辨率和输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器。上述文字不好理解的话,来看例子吧。例如,如果dp= 1时,累加器和输入图像具有相同的分辨率。如果dp=2,累加器便有输入图像一半那么大的宽度和高度。

·       第五个参数,double类型的minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离。这个参数如果太小的话,多个相邻的圆可能被错误地检测成了一个重合的圆。反之,这个参数设置太大的话,某些圆就不能被检测出来了。

·       第六个参数,double类型的param1,有默认值100。它是第三个参数method设置的检测方法的对应的参数。对当前唯一的方法霍夫梯度法CV_HOUGH_GRADIENT,它表示传递给canny边缘检测算子的高阈值,而低阈值为它的一半。

·       第七个参数,double类型的param2,也有默认值100。它是第三个参数method设置的检测方法的对应的参数。对当前唯一的方法霍夫梯度法CV_HOUGH_GRADIENT,它表示在检测阶段圆心的累加器阈值。它越小的话,就可以检测到更多的假圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了。

·       第八个参数,int类型的minRadius,有默认值0,表示圆半径的最小值。

·       第九个参数,int类型的maxRadius,也有默认值0,表示圆半径的最大值。

经过作者亲自对参数的调整,发现对检测结果影响最大的是第六个和第七个参数,作者已经将调节好的参数在函数中写了出来。

HoughCircles函数返回的是一个三维向量,其中保存了检测到的圆的x,y坐标和圆的半径r,然后需要建立一个绘制圆的函数将检测结果表示出来:
Mat ImgProcess::PlotC(vector<Vec3f> circles,Mat &midImage){for( size_t i = 0; i < circles.size(); i++ ){Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));int radius = cvRound(circles[i][2]);//cout<<i<<":"<<circles[i][0]<<","<<circles[i][1]<<","<<circles[i][2]<<endl;//绘制圆心cvRound进行四舍五入circle( midImage, center, 1, Scalar(255,0,0), -1,8);//绘制圆轮廓circle( midImage, center, radius, Scalar(255,0,0), 1,8 );}return midImage;}

最后分别建立一个对左右眼进行hough变换的函数对上述两个函数进行调用:

voidImgProcess::FindCenter()
{Lcircles=Hough(Leye_G);Rcircles=Hough(Reye_G);Leye=PlotC(Lcircles,Leye);Reye=PlotC(Rcircles,Reye);
}

最终的检测结果如图三所示。从结果中可以发现,检测结果不是非常稳定,存在漏检和误检的情况,这可能是参数设置的问题。利用本文所设置的参数,基本可以实现瞳孔的精确检测,通过调整人脸相对于摄像头的位置,一定可以检测到瞳孔,但是检测结果不一定是连续的。在误检的情况中,即使存在多余的检测结果,但是正确的结果也同时存在(如图三右图),说明正确相对于误检的结果,是最稳定的。


图三

在上一篇《基于QTopencv的摄像头(本地图片)读取并输出程序》的程序中的图像处理函数的位置,对上述函数进行调用,可以得到图四所得的结果。

ImgProcess pro(frame);//建立视频处理类
pro.EyeDetect();//人眼检测Mat image=pro.Outputimg();//输出检测图像imshow( "camera", image );QImage img=Mat2QImage(image);//将mat格式转换为Qimage格式ui->label->setPixmap(QPixmap::fromImage(img));//将结果在label上显示//ui->label->setScaledContents(true);//使图像尺寸与label大小匹配pro.DivideEye();//分成左右眼pro.EyeEdge();//瞳孔边缘检测pro.FindCenter();//hough变换求圆心Mat mleye=pro.OutLeye();//输出瞳孔定位结果QImage qleye=Mat2QImage(mleye);ui->label_2->setPixmap(QPixmap::fromImage(qleye));//ui->label_2->setScaledContents(true);Mat mreye=pro.OutReye();QImage qreye=Mat2QImage(mreye);ui->label_3->setPixmap(QPixmap::fromImage(qreye));//ui->label_3->setScaledContents(true);


图四

本篇博客介绍的是对opencv自带的图像处理函数的应用,下一篇《基于QTopencv瞳孔定位及跟踪程序》将介绍对检测到的数据进行检测的处理,实现瞳孔的定位和跟踪功能。整个图像处理类函数和类的调用函数将在下一篇完整给出。











这篇关于基于opencv和QT的瞳孔精确检测程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/307152

相关文章

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Qt 中 isHidden 和 isVisible 的区别与使用小结

《Qt中isHidden和isVisible的区别与使用小结》Qt中的isHidden()和isVisible()方法都用于查询组件显示或隐藏状态,然而,它们有很大的区别,了解它们对于正确操... 目录1. 基础概念2. 区别清见3. 实际案例4. 注意事项5. 总结1. 基础概念Qt 中的 isHidd

QT移植到RK3568开发板的方法步骤

《QT移植到RK3568开发板的方法步骤》本文主要介绍了QT移植到RK3568开发板的方法步骤,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录前言一、获取SDK1. 安装依赖2. 获取SDK资源包3. SDK工程目录介绍4. 获取补丁包二

Qt把文件夹从A移动到B的实现示例

《Qt把文件夹从A移动到B的实现示例》本文主要介绍了Qt把文件夹从A移动到B的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录如何移动一个文件? 如何移动文件夹(包含里面的全部内容):如何删除文件夹:QT 文件复制,移动(

如何用java对接微信小程序下单后的发货接口

《如何用java对接微信小程序下单后的发货接口》:本文主要介绍在微信小程序后台实现发货通知的步骤,包括获取Access_token、使用RestTemplate调用发货接口、处理AccessTok... 目录配置参数 调用代码获取Access_token调用发货的接口类注意点总结配置参数 首先需要获取Ac

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Qt实现发送HTTP请求的示例详解

《Qt实现发送HTTP请求的示例详解》这篇文章主要为大家详细介绍了如何通过Qt实现发送HTTP请求,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、添加network模块2、包含改头文件3、创建网络访问管理器4、创建接口5、创建网络请求对象6、创建一个回复对

将java程序打包成可执行文件的实现方式

《将java程序打包成可执行文件的实现方式》本文介绍了将Java程序打包成可执行文件的三种方法:手动打包(将编译后的代码及JRE运行环境一起打包),使用第三方打包工具(如Launch4j)和JDK自带... 目录1.问题提出2.如何将Java程序打包成可执行文件2.1将编译后的代码及jre运行环境一起打包2

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台