本文主要是介绍停车场空位检测 yolov5实战篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
给个代码链接yolov5
下载源码解压
不是吧不是吧不会有人还想着一个环境跑所有项目吧
一天最无聊的事情又开始了
先搭个环境
conda create -n yolov5 python=3.6
conda activate yolov5
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0
pip install yolov5/requirements.txt
数据集的链接也给一下,下载不了弄个火箭,速度杠杠的。
https://public.roboflow.com/ds/0PNziZFqaf?key=0T4ORDhjrG
数据集下载解压后新建个文件将train val test 放进去
为自己的数据集建一个配置文件data.yaml,内容如下
#这个地方的路径需要与解压后的数据路径对应上
train: ./dataset/train/images
val: ./dataset/valid/imagesnc: 2
names: ['space-empty', 'space-occupied']
#由于我们只检测两个类别,所以label 只有'space-empty', 'space-occupied',同理可换成你自己的数据类别
接下来就是定义yolov5的配置文件了,在models下定义自己的配置文件my.yaml
nc: 2 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32# YOLOv5 backbone
backbone:# [from, number, module, args][[-1, 1, Focus, [64, 3]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, BottleneckCSP, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 9, BottleneckCSP, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, BottleneckCSP, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 1, SPP, [1024, [5, 9, 13]]],[-1, 3, BottleneckCSP, [1024, False]], # 9]# YOLOv5 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, BottleneckCSP, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
执行以下命令开始训练开始训练
python train.py --img 416 --batch 64 --epochs 100 --data 'data.yaml' --cfg ./models/my.yaml --weights '' --name yolov5s_results --cache
运气真不错可以训练
训练好了模型也保存了
测一下
python detect.py --weights best.pt --img 416 --conf 0.7 --source ./test
这里放几张测试效果图
有一说一效果还行
这篇关于停车场空位检测 yolov5实战篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!