Python:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解23组基本测试函数

本文主要是介绍Python:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解23组基本测试函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、鱼鹰优化算法简介

鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovský于2023年提出,其模拟鱼鹰的捕食行为。
在这里插入图片描述

鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米,体重1000-1750克。头部白色,头顶具有黑褐色的纵纹,枕部的羽毛稍微呈披针形延长,形成一个短的羽冠。头的侧面有一条宽阔的黑带,从前额的基部经过眼睛到后颈部,并与后颈的黑色融为一体。上体为暗褐色,略微具有紫色的光泽。下体为白色,胸部的暗色纵纹和飞羽,以及尾羽上相间排列的横斑均极为醒目。虹膜淡黄色或橙黄色,眼周裸露皮肤铅黄绿色,嘴黑色,蜡膜铅蓝色,脚和趾黄色,爪黑色。

鱼鹰栖息于湖泊、河流、海岸或开阔地,尤其喜欢在山地森林中的河谷或有树木的水域地带活动。常见在江河、湖沼及海滨一带飞翔,一见水中有饵,就直下水面,用脚掠之而去。趾具锐爪,趾底遍生细刺,外趾复能由前向后反转,这些都很适于捕鱼。在天气晴朗之日,盘旋于水面上空,定点后俯冲而下,再将捕获的鱼带至岩石、电杆、树上等地方享用。巢常营于海岸或岛屿的岩礁上。主要以鱼为食,有时也捕食蛙、蜥蜴、小型鸟类等其他小型陆栖动物。除了南极和北极,亚洲、北美洲等各大洲均有分布。

1.1鱼鹰优化算法原理

鱼鹰优化算法包含两个阶段:第一阶段为鱼鹰识别鱼的位置并捕鱼(全局勘探), 第二阶段为将鱼带到合适的位置( 局部开采),其详细设计如下:

1.1.1 种群初始化

采用下式随机初始化鱼鹰种群:
X = [ X 1 ⋮ X i ⋮ X N ] N × m = [ x 1 , 1 ⋯ x 1 , j ⋯ x 1 , m ⋮ ⋱ ⋮ ⋱ ⋮ x i , 1 ⋯ x i , j ⋯ x i , m ⋮ ⋱ ⋮ ⋱ ⋮ x N , 1 ⋯ x N , j ⋯ x N , m ] N × m , x i , j = l b j + r i , j ⋅ ( u b j − l b j ) , i = 1 , 2 , … , N , j = 1 , 2 , … , m , \begin{array}{c} X=\left[\begin{array}{c} X_{1} \\ \vdots \\ X_{i} \\ \vdots \\ X_{N} \end{array}\right]_{N \times m}=\left[\begin{array}{ccccc} x_{1,1} & \cdots & x_{1, j} & \cdots & x_{1, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i, 1} & \cdots & x_{i, j} & \cdots & x_{i, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{N, 1} & \cdots & x_{N, j} & \cdots & x_{N, m} \end{array}\right]_{N \times m}, \\ x_{i, j}=l b_{j}+r_{i, j} \cdot\left(u b_{j}-l b_{j}\right), i=1,2, \ldots, N, j=1,2, \ldots, m, \end{array} X= X1XiXN N×m= x1,1xi,1xN,1x1,jxi,jxN,jx1,mxi,mxN,m N×m,xi,j=lbj+ri,j(ubjlbj),i=1,2,,N,j=1,2,,m,
其中,N为鱼鹰的数量,m为问题的维度,初始化位置后依据优化问题计算适应度值:
F = [ F 1 ⋮ F i ⋮ F N ] N × 1 = [ F ( X 1 ) ⋮ F ( X i ) ⋮ F ( X N ) ] N × 1 F=\left[\begin{array}{c} F_{1} \\ \vdots \\ F_{i} \\ \vdots \\ F_{N} \end{array}\right]_{N \times 1}=\left[\begin{array}{c} F\left(X_{1}\right) \\ \vdots \\ F\left(X_{i}\right) \\ \vdots \\ F\left(X_{N}\right) \end{array}\right]_{N \times 1} F= F1FiFN N×1= F(X1)F(Xi)F(XN) N×1

1.1.2 全局勘探(第一阶段:位置识别和捕鱼)

鱼鹰是强大的猎人,由于其强大的视力,能够探测到水下鱼类的位置。在确定鱼的位置后,他们攻击它并通过潜入水下捕猎鱼。OOA中种群更新的第一阶段是基于对鱼鹰这种自然行为的模拟而建模的。对鱼鹰攻击鱼类进行建模会导致鱼鹰在搜索空间中的位置发生显著变化,这增加了OOA在识别最优区域和逃离局部最优方面的探索能力。在OOA设计中,对于每只鱼鹰,搜索空间中具有较好目标函数值的其他鱼鹰的位置被视为水下鱼类。每只鱼鹰的位置使用下式指定。
F P i = { X k ∣ k ∈ { 1 , 2 , … , N } ∧ F k < F i } ∪ { X best  } \boldsymbol{F P _ { i }}=\left\{X_{k} \mid \boldsymbol{k} \in\{1,2, \ldots, N\} \wedge \boldsymbol{F}_{k}<\boldsymbol{F}_{i}\right\} \cup\left\{\boldsymbol{X}_{\text {best }}\right\} FPi={Xkk{1,2,,N}Fk<Fi}{Xbest }
其中, F P i F P _ { i } FPi为第i只鱼鹰的位置集合, X best  {X}_{\text {best }} Xbest 为最佳鱼鹰的位置。
鱼鹰随机检测其中一条鱼的位置并攻击它。基于鱼鹰向鱼的运动模拟,使用下式计算相应鱼鹰的新位置。这个新位置,如果它的目标函数的值更好,则替换鱼鹰的先前位置。
x i , j P 1 = x i , j + r i , j ⋅ ( S F i , j − I i , j ⋅ x i , j ) , x i , j P 1 = { x i , j P 1 , l b j ≤ x i , j P 1 ≤ u b j ; l b j , x i , j P 1 < l b j ; u b j , x i , j P 1 > u b j . X i = { X i P 1 , F i P 1 < F i ; X i , else  , \begin{array}{l} x_{i, j}^{P 1}=x_{i, j}+r_{i, j} \cdot\left(S F_{i, j}-I_{i, j} \cdot x_{i, j}\right), \\ x_{i, j}^{P 1}=\left\{\begin{array}{ll} x_{i, j}^{P 1}, & l b_{j} \leq x_{i, j}^{P 1} \leq u b_{j} ; \\ l b_{j}, & x_{i, j}^{P 1}<l b_{j} ; \\ u b_{j}, & x_{i, j}^{P 1}>u b_{j} . \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 1}, F_{i}^{P 1}<F_{i} ; \\ X_{i}, \text { else }, \end{array}\right. \\ \end{array} xi,jP1=xi,j+ri,j(SFi,jIi,jxi,j),xi,jP1= xi,jP1,lbj,ubj,lbjxi,jP1ubj;xi,jP1<lbj;xi,jP1>ubj.Xi={XiP1,FiP1<Fi;Xi, else ,
其中, x i , j P 1 x_{i, j}^{P 1} xi,jP1为第i只鱼鹰在第一阶段时,其第j维的新位置, F i , j P 1 F_{i, j}^{P 1} Fi,jP1是其对应的适应度值。 S F i , j S F_{i, j} SFi,j为[0,1]之间的随机数, I i , j I_{i, j} Ii,j为集合{1,2}中的随机数。

1.1.3 局部开采(第二阶段:将鱼带到合适的位置)

捕食鱼后,鱼鹰将其带到合适(对他来说安全)的位置,并在那里吃。OOA中更新种群的第二阶段是基于鱼鹰这种自然行为的模拟建模的。将鱼带到合适位置的建模导致鱼鹰在搜索空间中的位置发生微小变化,从而导致 OOA 在本地搜索中的开发能力增加,并在发现的解决方案附近收敛到更好的解决方案。在OOA的设计中,为了模拟鱼鹰的这种自然行为,首先,针对种群的每个成员,使用下式计算一个新的随机位置作为“适合吃鱼的位置”。然后,如果目标函数的值在这个新位置得到改善,则替换相应鱼鹰的先前位置。
x i , j P 2 = x i , j + l b j + r ⋅ ( u b j − l b j ) t , i = 1 , 2 , … , N , j = 1 , 2 , … , m , t = 1 , 2 , … , T , x i , j P 2 = { x i , j P 2 , l b j ≤ x i , j P 2 ≤ u b j ; l b j , x i , j P 2 < l b j u b j , x i , j P 2 > u b j , X i = { X i P 2 , F i P 2 < F i ; X i , else  , \begin{array}{c} x_{i, j}^{P 2}=x_{i, j}+\frac{l b_{j}+r \cdot\left(u b_{j}-l b_{j}\right)}{t}, i=1,2, \ldots, N, j=1,2, \ldots, m, t=1,2, \ldots, T, \\ x_{i, j}^{P 2}=\left\{\begin{array}{l} x_{i, j}^{P 2}, l b_{j} \leq x_{i, j}^{P 2} \leq u b_{j} ; \\ l b_{j}, x_{i, j}^{P 2}<l b_{j} \\ u b_{j}, x_{i, j}^{P 2}>u b_{j}, \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 2}, F_{i}^{P 2}<F_{i} ; \\ X_{i}, \text { else }, \end{array}\right. \end{array} xi,jP2=xi,j+tlbj+r(ubjlbj),i=1,2,,N,j=1,2,,m,t=1,2,,T,xi,jP2= xi,jP2,lbjxi,jP2ubj;lbj,xi,jP2<lbjubj,xi,jP2>ubj,Xi={XiP2,FiP2<Fi;Xi, else ,
其中, x i , j P 2 x_{i, j}^{P 2} xi,jP2为第i只鱼鹰在第二阶段时,其第j维的新位置, F i , j P 2 F_{i, j}^{P 2} Fi,jP2是其对应的适应度值。 r r r为[0,1]之间的随机数, t t t T T T分别为当前迭代次数和最大迭代次数。

1.2算法描述

在这里插入图片描述

1.3算法流程

在这里插入图片描述

1.4参考文献

Dehghani Mohammad, Trojovský Pavel.Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J].Frontiers in Mechanical Engineering,2023,8.

二、23组基本测试函数介绍

23组基本测试函数介绍
在智能优化算法的性能测试过程中,经常需要借助一些测试函数对算法的全局搜索和局部搜索的性能测试。CEC(国际进化计算会议) 测试函数,常用的23组整理如下:
在这里插入图片描述

参考文献:
[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、求解结果

完整Python代码添加博客下方博主微信:djpcNLP123
本例中OOA种群规模50,最大迭代次数100,加大迭代次数求解结果更优哦~

from FunInfo import Get_Functions_details
from OOA import OOA
import matplotlib.pyplot as plt
#主程序
function_name =1 #测试函数1-23
SearchAgents_no = 50#种群大小
Max_iter = 100#迭代次数
lb,ub,dim,fobj=Get_Functions_details(function_name)#获取问题信息
BestX,BestF,curve = OOA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
#画收敛曲线图
if BestF>0:plt.semilogy(curve,color='r',linewidth=2,label='OOA')
else:plt.plot(curve,color='r',linewidth=2,label='OOA')
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.xlim(0,Max_iter)
plt.title("F"+str(function_name))
plt.legend()
plt.savefig(str(function_name)+'.png')
plt.show()
print('\nThe best solution is:\n'+str(BestX))
print('\nThe best optimal value of the objective funciton is:\n'+str(BestF))

部分结果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、参考代码

完整Python代码添加博客下方博主微信

这篇关于Python:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解23组基本测试函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/304010

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.