Python:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解23组基本测试函数

本文主要是介绍Python:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解23组基本测试函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、鱼鹰优化算法简介

鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovský于2023年提出,其模拟鱼鹰的捕食行为。
在这里插入图片描述

鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米,体重1000-1750克。头部白色,头顶具有黑褐色的纵纹,枕部的羽毛稍微呈披针形延长,形成一个短的羽冠。头的侧面有一条宽阔的黑带,从前额的基部经过眼睛到后颈部,并与后颈的黑色融为一体。上体为暗褐色,略微具有紫色的光泽。下体为白色,胸部的暗色纵纹和飞羽,以及尾羽上相间排列的横斑均极为醒目。虹膜淡黄色或橙黄色,眼周裸露皮肤铅黄绿色,嘴黑色,蜡膜铅蓝色,脚和趾黄色,爪黑色。

鱼鹰栖息于湖泊、河流、海岸或开阔地,尤其喜欢在山地森林中的河谷或有树木的水域地带活动。常见在江河、湖沼及海滨一带飞翔,一见水中有饵,就直下水面,用脚掠之而去。趾具锐爪,趾底遍生细刺,外趾复能由前向后反转,这些都很适于捕鱼。在天气晴朗之日,盘旋于水面上空,定点后俯冲而下,再将捕获的鱼带至岩石、电杆、树上等地方享用。巢常营于海岸或岛屿的岩礁上。主要以鱼为食,有时也捕食蛙、蜥蜴、小型鸟类等其他小型陆栖动物。除了南极和北极,亚洲、北美洲等各大洲均有分布。

1.1鱼鹰优化算法原理

鱼鹰优化算法包含两个阶段:第一阶段为鱼鹰识别鱼的位置并捕鱼(全局勘探), 第二阶段为将鱼带到合适的位置( 局部开采),其详细设计如下:

1.1.1 种群初始化

采用下式随机初始化鱼鹰种群:
X = [ X 1 ⋮ X i ⋮ X N ] N × m = [ x 1 , 1 ⋯ x 1 , j ⋯ x 1 , m ⋮ ⋱ ⋮ ⋱ ⋮ x i , 1 ⋯ x i , j ⋯ x i , m ⋮ ⋱ ⋮ ⋱ ⋮ x N , 1 ⋯ x N , j ⋯ x N , m ] N × m , x i , j = l b j + r i , j ⋅ ( u b j − l b j ) , i = 1 , 2 , … , N , j = 1 , 2 , … , m , \begin{array}{c} X=\left[\begin{array}{c} X_{1} \\ \vdots \\ X_{i} \\ \vdots \\ X_{N} \end{array}\right]_{N \times m}=\left[\begin{array}{ccccc} x_{1,1} & \cdots & x_{1, j} & \cdots & x_{1, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i, 1} & \cdots & x_{i, j} & \cdots & x_{i, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{N, 1} & \cdots & x_{N, j} & \cdots & x_{N, m} \end{array}\right]_{N \times m}, \\ x_{i, j}=l b_{j}+r_{i, j} \cdot\left(u b_{j}-l b_{j}\right), i=1,2, \ldots, N, j=1,2, \ldots, m, \end{array} X= X1XiXN N×m= x1,1xi,1xN,1x1,jxi,jxN,jx1,mxi,mxN,m N×m,xi,j=lbj+ri,j(ubjlbj),i=1,2,,N,j=1,2,,m,
其中,N为鱼鹰的数量,m为问题的维度,初始化位置后依据优化问题计算适应度值:
F = [ F 1 ⋮ F i ⋮ F N ] N × 1 = [ F ( X 1 ) ⋮ F ( X i ) ⋮ F ( X N ) ] N × 1 F=\left[\begin{array}{c} F_{1} \\ \vdots \\ F_{i} \\ \vdots \\ F_{N} \end{array}\right]_{N \times 1}=\left[\begin{array}{c} F\left(X_{1}\right) \\ \vdots \\ F\left(X_{i}\right) \\ \vdots \\ F\left(X_{N}\right) \end{array}\right]_{N \times 1} F= F1FiFN N×1= F(X1)F(Xi)F(XN) N×1

1.1.2 全局勘探(第一阶段:位置识别和捕鱼)

鱼鹰是强大的猎人,由于其强大的视力,能够探测到水下鱼类的位置。在确定鱼的位置后,他们攻击它并通过潜入水下捕猎鱼。OOA中种群更新的第一阶段是基于对鱼鹰这种自然行为的模拟而建模的。对鱼鹰攻击鱼类进行建模会导致鱼鹰在搜索空间中的位置发生显著变化,这增加了OOA在识别最优区域和逃离局部最优方面的探索能力。在OOA设计中,对于每只鱼鹰,搜索空间中具有较好目标函数值的其他鱼鹰的位置被视为水下鱼类。每只鱼鹰的位置使用下式指定。
F P i = { X k ∣ k ∈ { 1 , 2 , … , N } ∧ F k < F i } ∪ { X best  } \boldsymbol{F P _ { i }}=\left\{X_{k} \mid \boldsymbol{k} \in\{1,2, \ldots, N\} \wedge \boldsymbol{F}_{k}<\boldsymbol{F}_{i}\right\} \cup\left\{\boldsymbol{X}_{\text {best }}\right\} FPi={Xkk{1,2,,N}Fk<Fi}{Xbest }
其中, F P i F P _ { i } FPi为第i只鱼鹰的位置集合, X best  {X}_{\text {best }} Xbest 为最佳鱼鹰的位置。
鱼鹰随机检测其中一条鱼的位置并攻击它。基于鱼鹰向鱼的运动模拟,使用下式计算相应鱼鹰的新位置。这个新位置,如果它的目标函数的值更好,则替换鱼鹰的先前位置。
x i , j P 1 = x i , j + r i , j ⋅ ( S F i , j − I i , j ⋅ x i , j ) , x i , j P 1 = { x i , j P 1 , l b j ≤ x i , j P 1 ≤ u b j ; l b j , x i , j P 1 < l b j ; u b j , x i , j P 1 > u b j . X i = { X i P 1 , F i P 1 < F i ; X i , else  , \begin{array}{l} x_{i, j}^{P 1}=x_{i, j}+r_{i, j} \cdot\left(S F_{i, j}-I_{i, j} \cdot x_{i, j}\right), \\ x_{i, j}^{P 1}=\left\{\begin{array}{ll} x_{i, j}^{P 1}, & l b_{j} \leq x_{i, j}^{P 1} \leq u b_{j} ; \\ l b_{j}, & x_{i, j}^{P 1}<l b_{j} ; \\ u b_{j}, & x_{i, j}^{P 1}>u b_{j} . \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 1}, F_{i}^{P 1}<F_{i} ; \\ X_{i}, \text { else }, \end{array}\right. \\ \end{array} xi,jP1=xi,j+ri,j(SFi,jIi,jxi,j),xi,jP1= xi,jP1,lbj,ubj,lbjxi,jP1ubj;xi,jP1<lbj;xi,jP1>ubj.Xi={XiP1,FiP1<Fi;Xi, else ,
其中, x i , j P 1 x_{i, j}^{P 1} xi,jP1为第i只鱼鹰在第一阶段时,其第j维的新位置, F i , j P 1 F_{i, j}^{P 1} Fi,jP1是其对应的适应度值。 S F i , j S F_{i, j} SFi,j为[0,1]之间的随机数, I i , j I_{i, j} Ii,j为集合{1,2}中的随机数。

1.1.3 局部开采(第二阶段:将鱼带到合适的位置)

捕食鱼后,鱼鹰将其带到合适(对他来说安全)的位置,并在那里吃。OOA中更新种群的第二阶段是基于鱼鹰这种自然行为的模拟建模的。将鱼带到合适位置的建模导致鱼鹰在搜索空间中的位置发生微小变化,从而导致 OOA 在本地搜索中的开发能力增加,并在发现的解决方案附近收敛到更好的解决方案。在OOA的设计中,为了模拟鱼鹰的这种自然行为,首先,针对种群的每个成员,使用下式计算一个新的随机位置作为“适合吃鱼的位置”。然后,如果目标函数的值在这个新位置得到改善,则替换相应鱼鹰的先前位置。
x i , j P 2 = x i , j + l b j + r ⋅ ( u b j − l b j ) t , i = 1 , 2 , … , N , j = 1 , 2 , … , m , t = 1 , 2 , … , T , x i , j P 2 = { x i , j P 2 , l b j ≤ x i , j P 2 ≤ u b j ; l b j , x i , j P 2 < l b j u b j , x i , j P 2 > u b j , X i = { X i P 2 , F i P 2 < F i ; X i , else  , \begin{array}{c} x_{i, j}^{P 2}=x_{i, j}+\frac{l b_{j}+r \cdot\left(u b_{j}-l b_{j}\right)}{t}, i=1,2, \ldots, N, j=1,2, \ldots, m, t=1,2, \ldots, T, \\ x_{i, j}^{P 2}=\left\{\begin{array}{l} x_{i, j}^{P 2}, l b_{j} \leq x_{i, j}^{P 2} \leq u b_{j} ; \\ l b_{j}, x_{i, j}^{P 2}<l b_{j} \\ u b_{j}, x_{i, j}^{P 2}>u b_{j}, \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 2}, F_{i}^{P 2}<F_{i} ; \\ X_{i}, \text { else }, \end{array}\right. \end{array} xi,jP2=xi,j+tlbj+r(ubjlbj),i=1,2,,N,j=1,2,,m,t=1,2,,T,xi,jP2= xi,jP2,lbjxi,jP2ubj;lbj,xi,jP2<lbjubj,xi,jP2>ubj,Xi={XiP2,FiP2<Fi;Xi, else ,
其中, x i , j P 2 x_{i, j}^{P 2} xi,jP2为第i只鱼鹰在第二阶段时,其第j维的新位置, F i , j P 2 F_{i, j}^{P 2} Fi,jP2是其对应的适应度值。 r r r为[0,1]之间的随机数, t t t T T T分别为当前迭代次数和最大迭代次数。

1.2算法描述

在这里插入图片描述

1.3算法流程

在这里插入图片描述

1.4参考文献

Dehghani Mohammad, Trojovský Pavel.Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J].Frontiers in Mechanical Engineering,2023,8.

二、23组基本测试函数介绍

23组基本测试函数介绍
在智能优化算法的性能测试过程中,经常需要借助一些测试函数对算法的全局搜索和局部搜索的性能测试。CEC(国际进化计算会议) 测试函数,常用的23组整理如下:
在这里插入图片描述

参考文献:
[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、求解结果

完整Python代码添加博客下方博主微信:djpcNLP123
本例中OOA种群规模50,最大迭代次数100,加大迭代次数求解结果更优哦~

from FunInfo import Get_Functions_details
from OOA import OOA
import matplotlib.pyplot as plt
#主程序
function_name =1 #测试函数1-23
SearchAgents_no = 50#种群大小
Max_iter = 100#迭代次数
lb,ub,dim,fobj=Get_Functions_details(function_name)#获取问题信息
BestX,BestF,curve = OOA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
#画收敛曲线图
if BestF>0:plt.semilogy(curve,color='r',linewidth=2,label='OOA')
else:plt.plot(curve,color='r',linewidth=2,label='OOA')
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.xlim(0,Max_iter)
plt.title("F"+str(function_name))
plt.legend()
plt.savefig(str(function_name)+'.png')
plt.show()
print('\nThe best solution is:\n'+str(BestX))
print('\nThe best optimal value of the objective funciton is:\n'+str(BestF))

部分结果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、参考代码

完整Python代码添加博客下方博主微信

这篇关于Python:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解23组基本测试函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/304010

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig