OpenVINO 2021r2 - Remote Blob API of GPU Plugin 示例复现(二) Inference within User-Supplied Shared Contex

本文主要是介绍OpenVINO 2021r2 - Remote Blob API of GPU Plugin 示例复现(二) Inference within User-Supplied Shared Contex,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天再试试官方文档Remote Blob API of GPU Plugin里面的另一个例子Running GPU Plugin Inference within User-Supplied Shared Context,大概的意思就是由用户提供自己的OpenCL context,OpenVINO的clDNN利用用户共享的context来跑inference (对应的场景应该是用户已经有了自己的OpenCL实现的应用,然后要把OpenVINO GPU推理功能集成进自己应用的场景)。

 

官网的例子只给出了一部分代码片段,看的云山雾罩的,但是有了前一次的经验,感觉实现起来并不难,大致就是利用用户OCL对象的context来转换成remote context,创建ExecuableNetwork的时候把remote context传进去,这样clDNN里面所有OCL的操作都会基于用户提供这个context, 而不会创建自己独立的context. 另外输入输出的数据共享可以通过shared blob把OV推理网络的输入和输出层的数据指向用户自己创建的cl_mem内存对象即可。

 

GPU RemoteBlob API推理代码的实现

		/********************* Init OpenCL Device ***************************************///模拟3个用户从外面传进来的OpenCL对象(user_context,user_device,user_queue) 后面的//OpenVINO的IE clDNN都基于这个用户提供的OpenCL context来创建cl::Context user_context;cl::Device user_device;cl::CommandQueue user_queue;// get Intel iGPU OCL device, create context and queue{const unsigned int refVendorID = 0x8086;cl_uint n = 0;cl_int err = clGetPlatformIDs(0, NULL, &n);// Get platform liststd::vector<cl_platform_id> platform_ids(n);err = clGetPlatformIDs(n, platform_ids.data(), NULL);for (auto& id : platform_ids) {cl::Platform platform = cl::Platform(id);std::vector<cl::Device> devices;platform.getDevices(CL_DEVICE_TYPE_GPU, &devices);for (auto& d : devices) {if (refVendorID == d.getInfo<CL_DEVICE_VENDOR_ID>()) {user_device = d;user_context = cl::Context(user_device);break;}}}cl_command_queue_properties props = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE;user_queue = cl::CommandQueue(user_context, user_device, props);}.../*********** 开始演示OpenVINO Shared GPU context的用法 *******************//* 使用这种方法 IE/clDNN初始化时不会自己创建新的OpenCL ctx, 而是基于用户提供的OCL ctx来创建 *///create remote context, 先基于用户的OCL ctx创建remote contextauto remote_context = gpu::make_shared_context(ie, FLAGS_d, user_context.get());//创建shared execute network时, clDNN基于remote OCL context来初始化auto exec_net_shared = ie.LoadNetwork(network, remote_context);// inference using remote blobauto inf_req_shared = exec_net_shared.CreateInferRequest();auto dims = network.getInputsInfo().begin()->second->getTensorDesc().getDims();size_t imSize = dims[1] * dims[2] * dims[3];cout << "imSize = " << imSize << " dims[1]=" << dims[1] << " dims[2]=" << dims[2] << " dims[3]=" << dims[3] << endl << endl;size_t num_channels = dims[1];size_t image_size = dims[3] * dims[2];//prepare input image data/** Iterate over all pixel in image (b,g,r) **/unsigned char *ImageBuffer;ImageBuffer = (unsigned char *)malloc(imSize);unsigned char* pixels = (unsigned char*)(jpg.data);for (size_t pid = 0; pid < image_size; pid++) {/** Iterate over all channels **/for (size_t ch = 0; ch < num_channels; ++ch) {/**          [images stride + channels stride + pixel id ] all in bytes            **/ImageBuffer[ch * image_size + pid] = pixels[pid*num_channels + ch];//set input data to 0//ImageBuffer[ch * image_size + pid] = 0;}}//这里模拟用户自己的OCL ctx创建的一个cl::Buffer, 用来放推理的输入数据cl_int err;cl::Buffer shared_buffer(user_context, CL_MEM_READ_WRITE, imSize, NULL, &err);{void *buffer = ImageBuffer;user_queue.enqueueWriteBuffer(shared_buffer, true, 0, imSize, buffer);}//将这个cl::Buffer转成shared blobBlob::Ptr shared_blob = gpu::make_shared_blob(network.getInputsInfo().begin()->second->getTensorDesc(), remote_context,shared_buffer);//将推理网络的输入部分指向这个shared blob, 推理时会从这个blob里读数据inf_req_shared.SetBlob(network.getInputsInfo().begin()->first, shared_blob);//这里是已知用的是squeezenet, 输出是1000个FP32的数据,所以创建2个FP32 [1000]的数组size_t outputSize = 1000 * 4;float *C = new float[1000];float *D = new float[1000];for (int i = 0; i < 1000; i++){C[i] = 0;D[i] = 0;}//这里模拟用户自己的OCL ctx创建的一个cl::Buffer, 用来放推理输出的数据cl::Buffer shared_output_buffer(user_context, CL_MEM_READ_WRITE, outputSize, NULL, &err);{void *buffer = ImageBuffer;//将输出Buffer清零user_queue.enqueueWriteBuffer(shared_output_buffer, true, 0, sizeof(float)*1000, C);}//将输出的cl::Buffer转成shared blobBlob::Ptr shared_output_blob = gpu::make_shared_blob(network.getOutputsInfo().begin()->second->getTensorDesc(), remote_context,shared_output_buffer);//将推理网络输出数据层替换成这个shared blob, 这样推理输出的数据就会放到shared_output_buffer里inf_req_shared.SetBlob(network.getOutputsInfo().begin()->first, shared_output_blob);inf_req_shared.Infer();// Copy the output data back to the host//从shared_output_buffer里读出推理结果,放到数组D里user_queue.enqueueReadBuffer(shared_output_buffer, CL_TRUE, 0, sizeof(float) * 1000, D);for (int i = 0; i < 1000; i++){//如果D数组的值大于0.0001, 则输出D数组的数据,数组的index对应1000组分类的indexif (D[i] > 0.0001){cout << "C[" << i << "] = " << C[i] << " - D[" << i << "] = " << D[i] << endl;}//可以看到输出分类信息和普通infernece输出结果一致,但是输出数据放在用户的cl::Buffer里}

 

编译运行程序,得到结果

 

和上一篇OpenCL Kernel Execution on a Shared Buffer例子的输出一致,收工 :)

 

个人感受:

OV的2个例子shared buffer和shared context的思路基本是一致的。因为GPU里运行的不同程序也和CPU这边的多进程程序一样,不同进程之间的数据是相互隔离的。所以要想共享GPU多个程序之间的数据,最简单的方法就是多个程序共享同一个OCL的context来创建, 也就是互相认干爹,有了同一个context爸爸,数据自然也就能互相访问了 :)

 

最后完整项目奉上,仅供参考

https://gitee.com/tisandman/cl_ov_sharing_ctx

这篇关于OpenVINO 2021r2 - Remote Blob API of GPU Plugin 示例复现(二) Inference within User-Supplied Shared Contex的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301006

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

mysql查询使用_rowid虚拟列的示例

《mysql查询使用_rowid虚拟列的示例》MySQL中,_rowid是InnoDB虚拟列,用于无主键表的行ID查询,若存在主键或唯一列,则指向其,否则使用隐藏ID(不稳定),推荐使用ROW_NUM... 目录1. 基本查询(适用于没有主键的表)2. 检查表是否支持 _rowid3. 注意事项4. 最佳实

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动