深度学习第二周 tensorflow实现彩色图片识别识别

2023-10-29 07:20

本文主要是介绍深度学习第二周 tensorflow实现彩色图片识别识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 内部限免文章(版权归 K同学啊 所有)
  • ** 参考文章地址:🔗深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天 **
  • 🍖 作者:K同学啊

    文章目录

    • 一、本周学习内容:
      • 1、卷积层
      • 2、池化层
    • 二、前言
    • 三、电脑环境
    • 四、前期准备
      • 1、导入相关依赖项
      • 2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)
      • 3、加载数据集和展示
        • (1)、数据集加载
        • (2)、数据展示
    • 五、数据预处理
    • 六、搭建CNN网络
    • 七、绘制损失函数图像和准确度图像

一、本周学习内容:

1、卷积层

卷积层的作用为提取输入数据中的特征
假如输入图片为33,卷积核为22,不填充,步长为1,卷积效果如下
在这里插入图片描述
从左到右从上到下一次依次相乘再求和
如:19=0x0+1x1+3x2+4x3
25=1x0+2x1+4x2+5x3
加入填充层,输入图片为33,卷积核为22,填充宽高都为1,步长为1,卷积效果如下
在这里插入图片描述
在加入填充层的情况下把步长改为2,卷积效果如下:
在这里插入图片描述
注意如果当输入维度进行卷积移动时,余下的不够进行再次计算,则余下那列(或行)被舍弃,当然有时为了计算快速,则跳过一列(或一行)进行计算,如上图中,进行列移动时,就跳过了一行
卷积后宽高的计算公式
在这里插入图片描述
如:上面三个的输出维度计算分别为:
动图1:(3-2+2x0)÷1+1=2
动图2:(3-2+2x1)÷1+1=4
动图3:(3-2+2x1)÷2+1=2.5(保留整数)=2
注意:宽高要分别计算。

2、池化层

池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一方面进行特征压缩,提取主要特征,增加平移不变性,减少过拟合风险。但其实池化更多程度上是一种计算性能的一个妥协,强硬地压缩特征的同时也损失了一部分信息,所以现在的网络比较少用池化层或者使用优化后的如SoftPool。
池化层有最大池化层和平均池化层,选择一个区域内的最大值或平均值。
如输入图片为3x3,选择的池化从尺寸为2x2的
在这里插入图片描述

二、前言

CIFAR-10数据集由6万张32*32的彩色图片组成,一共有10个类别。每个类别6000张图片。其中有5万张训练图片及1万张测试图片。它的收集者是:Alex Krizhevsky, Vinod Nair, Geoffrey Hinton。
类别包括:[ ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, 'deer ’ , ’ dog ', ‘frog’, 'horse ', ‘ship’, ‘truck’]

三、电脑环境

电脑系统:Windows 10
语言环境:Python 3.8.8
编译器:Pycharm 2021.1.3
深度学习环境:TensorFlow 2.8.0,keras 2.8.0
显卡及显存:RTX 3070 8G

四、前期准备

1、导入相关依赖项

from keras.datasets import cifar10
from keras.models import *
from keras.layers import *
from tensorflow import keras
import matplotlib.pyplot as plt

2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)

只使用GPU

if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

使用cpu和gpu
os.environ[“CUDA_VISIBLE_DEVICES”] = “-1”

3、加载数据集和展示

(1)、数据集加载

# 数据加载
(x_train,y_train),(x_test,y_test) = cifar10.load_data()

这里的数据集加载方式和上篇文章mnist有些区别
运行上面命令后 会在.C:\Users\用户名(此处填你自己的)\.keras\datasets中有这么一个压缩包
在这里插入图片描述
解压后里面就是相关数据集和html文件介绍
如果直接加载数据集报错,数据集下载失败的,参考第一周文章

(2)、数据展示

直接使用第一周文章代码进行展示
分别展示训练集和测试集各自的前十张图片

# 图片展示
plt.figure(figsize=(20, 5))  # 创建一个画布,画布大小为宽20、高5(单位为英寸inch)
for i, imgs in enumerate(x_train[:10]):# 将整个画布分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
for i, imgs in enumerate(x_test[:10]):# 将整个画布分成2行10列,绘制第i+11个子图。plt.subplot(2, 10, i+11)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
plt.show()  #使用pycharm的需要加入这行代码才能将图像显示出来

在这里插入图片描述

五、数据预处理

我们需要将验证集和测数据数据增加一个维度,并将其像素从0-255划分到0-1之间减少计算量,我们还需要将标签集进行热编码处理

# 数据预处理
x_train,x_test=x_train/255.,x_test/255.
# 标签热编码
y_train,y_test = keras.utils.to_categorical(y_train),keras.utils.to_categorical(y_test)

六、搭建CNN网络

相关网络模型和参数与第一周

# 网络模型
model = Sequential([Conv2D(filters=32,kernel_size=3,activation='relu',input_shape=(28,28,1)),MaxPool2D((2,2)),Conv2D(filters=64,kernel_size=3,activation='relu'),MaxPool2D((2,2)),Flatten(),Dense(64,activation='relu'),Dense(10,activation='softmax')  # 输出为10类别
])
# 设置优化器相关
model.compile(optimizer=keras.optimizers.SGD(learning_rate=0.01),loss=keras.losses.binary_crossentropy,metrics=['acc'])
evaluate = model.evaluate(x_test,y_test)
print(evaluate)
Epoch 1/10
1667/1667 [==============================] - 22s 3ms/step - loss: 0.3390 - acc: 0.1615 - val_loss: 0.3214 - val_acc: 0.1835
Epoch 2/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3158 - acc: 0.2204 - val_loss: 0.3093 - val_acc: 0.2504
Epoch 3/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3020 - acc: 0.2741 - val_loss: 0.2947 - val_acc: 0.2989
Epoch 4/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2918 - acc: 0.3025 - val_loss: 0.2878 - val_acc: 0.3235
Epoch 5/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2858 - acc: 0.3235 - val_loss: 0.2819 - val_acc: 0.3452
Epoch 6/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2796 - acc: 0.3437 - val_loss: 0.2754 - val_acc: 0.3592
Epoch 7/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2732 - acc: 0.3641 - val_loss: 0.2696 - val_acc: 0.3739
Epoch 8/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2667 - acc: 0.3831 - val_loss: 0.2630 - val_acc: 0.3902
Epoch 9/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2604 - acc: 0.4003 - val_loss: 0.2573 - val_acc: 0.4097
Epoch 10/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2549 - acc: 0.4123 - val_loss: 0.2521 - val_acc: 0.4195
313/313 [==============================] - 1s 2ms/step - loss: 0.2521 - acc: 0.4195
[0.25214818120002747, 0.4194999933242798]

七、绘制损失函数图像和准确度图像

绘制代码与第一周文章相同

# 画准确度图
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(10)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
以上就是我本周的学习内容
在这里插入图片描述

这篇关于深度学习第二周 tensorflow实现彩色图片识别识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299128

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja