深度学习第二周 tensorflow实现彩色图片识别识别

2023-10-29 07:20

本文主要是介绍深度学习第二周 tensorflow实现彩色图片识别识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 内部限免文章(版权归 K同学啊 所有)
  • ** 参考文章地址:🔗深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天 **
  • 🍖 作者:K同学啊

    文章目录

    • 一、本周学习内容:
      • 1、卷积层
      • 2、池化层
    • 二、前言
    • 三、电脑环境
    • 四、前期准备
      • 1、导入相关依赖项
      • 2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)
      • 3、加载数据集和展示
        • (1)、数据集加载
        • (2)、数据展示
    • 五、数据预处理
    • 六、搭建CNN网络
    • 七、绘制损失函数图像和准确度图像

一、本周学习内容:

1、卷积层

卷积层的作用为提取输入数据中的特征
假如输入图片为33,卷积核为22,不填充,步长为1,卷积效果如下
在这里插入图片描述
从左到右从上到下一次依次相乘再求和
如:19=0x0+1x1+3x2+4x3
25=1x0+2x1+4x2+5x3
加入填充层,输入图片为33,卷积核为22,填充宽高都为1,步长为1,卷积效果如下
在这里插入图片描述
在加入填充层的情况下把步长改为2,卷积效果如下:
在这里插入图片描述
注意如果当输入维度进行卷积移动时,余下的不够进行再次计算,则余下那列(或行)被舍弃,当然有时为了计算快速,则跳过一列(或一行)进行计算,如上图中,进行列移动时,就跳过了一行
卷积后宽高的计算公式
在这里插入图片描述
如:上面三个的输出维度计算分别为:
动图1:(3-2+2x0)÷1+1=2
动图2:(3-2+2x1)÷1+1=4
动图3:(3-2+2x1)÷2+1=2.5(保留整数)=2
注意:宽高要分别计算。

2、池化层

池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一方面进行特征压缩,提取主要特征,增加平移不变性,减少过拟合风险。但其实池化更多程度上是一种计算性能的一个妥协,强硬地压缩特征的同时也损失了一部分信息,所以现在的网络比较少用池化层或者使用优化后的如SoftPool。
池化层有最大池化层和平均池化层,选择一个区域内的最大值或平均值。
如输入图片为3x3,选择的池化从尺寸为2x2的
在这里插入图片描述

二、前言

CIFAR-10数据集由6万张32*32的彩色图片组成,一共有10个类别。每个类别6000张图片。其中有5万张训练图片及1万张测试图片。它的收集者是:Alex Krizhevsky, Vinod Nair, Geoffrey Hinton。
类别包括:[ ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, 'deer ’ , ’ dog ', ‘frog’, 'horse ', ‘ship’, ‘truck’]

三、电脑环境

电脑系统:Windows 10
语言环境:Python 3.8.8
编译器:Pycharm 2021.1.3
深度学习环境:TensorFlow 2.8.0,keras 2.8.0
显卡及显存:RTX 3070 8G

四、前期准备

1、导入相关依赖项

from keras.datasets import cifar10
from keras.models import *
from keras.layers import *
from tensorflow import keras
import matplotlib.pyplot as plt

2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)

只使用GPU

if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

使用cpu和gpu
os.environ[“CUDA_VISIBLE_DEVICES”] = “-1”

3、加载数据集和展示

(1)、数据集加载

# 数据加载
(x_train,y_train),(x_test,y_test) = cifar10.load_data()

这里的数据集加载方式和上篇文章mnist有些区别
运行上面命令后 会在.C:\Users\用户名(此处填你自己的)\.keras\datasets中有这么一个压缩包
在这里插入图片描述
解压后里面就是相关数据集和html文件介绍
如果直接加载数据集报错,数据集下载失败的,参考第一周文章

(2)、数据展示

直接使用第一周文章代码进行展示
分别展示训练集和测试集各自的前十张图片

# 图片展示
plt.figure(figsize=(20, 5))  # 创建一个画布,画布大小为宽20、高5(单位为英寸inch)
for i, imgs in enumerate(x_train[:10]):# 将整个画布分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
for i, imgs in enumerate(x_test[:10]):# 将整个画布分成2行10列,绘制第i+11个子图。plt.subplot(2, 10, i+11)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
plt.show()  #使用pycharm的需要加入这行代码才能将图像显示出来

在这里插入图片描述

五、数据预处理

我们需要将验证集和测数据数据增加一个维度,并将其像素从0-255划分到0-1之间减少计算量,我们还需要将标签集进行热编码处理

# 数据预处理
x_train,x_test=x_train/255.,x_test/255.
# 标签热编码
y_train,y_test = keras.utils.to_categorical(y_train),keras.utils.to_categorical(y_test)

六、搭建CNN网络

相关网络模型和参数与第一周

# 网络模型
model = Sequential([Conv2D(filters=32,kernel_size=3,activation='relu',input_shape=(28,28,1)),MaxPool2D((2,2)),Conv2D(filters=64,kernel_size=3,activation='relu'),MaxPool2D((2,2)),Flatten(),Dense(64,activation='relu'),Dense(10,activation='softmax')  # 输出为10类别
])
# 设置优化器相关
model.compile(optimizer=keras.optimizers.SGD(learning_rate=0.01),loss=keras.losses.binary_crossentropy,metrics=['acc'])
evaluate = model.evaluate(x_test,y_test)
print(evaluate)
Epoch 1/10
1667/1667 [==============================] - 22s 3ms/step - loss: 0.3390 - acc: 0.1615 - val_loss: 0.3214 - val_acc: 0.1835
Epoch 2/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3158 - acc: 0.2204 - val_loss: 0.3093 - val_acc: 0.2504
Epoch 3/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3020 - acc: 0.2741 - val_loss: 0.2947 - val_acc: 0.2989
Epoch 4/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2918 - acc: 0.3025 - val_loss: 0.2878 - val_acc: 0.3235
Epoch 5/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2858 - acc: 0.3235 - val_loss: 0.2819 - val_acc: 0.3452
Epoch 6/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2796 - acc: 0.3437 - val_loss: 0.2754 - val_acc: 0.3592
Epoch 7/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2732 - acc: 0.3641 - val_loss: 0.2696 - val_acc: 0.3739
Epoch 8/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2667 - acc: 0.3831 - val_loss: 0.2630 - val_acc: 0.3902
Epoch 9/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2604 - acc: 0.4003 - val_loss: 0.2573 - val_acc: 0.4097
Epoch 10/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2549 - acc: 0.4123 - val_loss: 0.2521 - val_acc: 0.4195
313/313 [==============================] - 1s 2ms/step - loss: 0.2521 - acc: 0.4195
[0.25214818120002747, 0.4194999933242798]

七、绘制损失函数图像和准确度图像

绘制代码与第一周文章相同

# 画准确度图
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(10)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
以上就是我本周的学习内容
在这里插入图片描述

这篇关于深度学习第二周 tensorflow实现彩色图片识别识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299128

相关文章

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各