深度学习第二周 tensorflow实现彩色图片识别识别

2023-10-29 07:20

本文主要是介绍深度学习第二周 tensorflow实现彩色图片识别识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 内部限免文章(版权归 K同学啊 所有)
  • ** 参考文章地址:🔗深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天 **
  • 🍖 作者:K同学啊

    文章目录

    • 一、本周学习内容:
      • 1、卷积层
      • 2、池化层
    • 二、前言
    • 三、电脑环境
    • 四、前期准备
      • 1、导入相关依赖项
      • 2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)
      • 3、加载数据集和展示
        • (1)、数据集加载
        • (2)、数据展示
    • 五、数据预处理
    • 六、搭建CNN网络
    • 七、绘制损失函数图像和准确度图像

一、本周学习内容:

1、卷积层

卷积层的作用为提取输入数据中的特征
假如输入图片为33,卷积核为22,不填充,步长为1,卷积效果如下
在这里插入图片描述
从左到右从上到下一次依次相乘再求和
如:19=0x0+1x1+3x2+4x3
25=1x0+2x1+4x2+5x3
加入填充层,输入图片为33,卷积核为22,填充宽高都为1,步长为1,卷积效果如下
在这里插入图片描述
在加入填充层的情况下把步长改为2,卷积效果如下:
在这里插入图片描述
注意如果当输入维度进行卷积移动时,余下的不够进行再次计算,则余下那列(或行)被舍弃,当然有时为了计算快速,则跳过一列(或一行)进行计算,如上图中,进行列移动时,就跳过了一行
卷积后宽高的计算公式
在这里插入图片描述
如:上面三个的输出维度计算分别为:
动图1:(3-2+2x0)÷1+1=2
动图2:(3-2+2x1)÷1+1=4
动图3:(3-2+2x1)÷2+1=2.5(保留整数)=2
注意:宽高要分别计算。

2、池化层

池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一方面进行特征压缩,提取主要特征,增加平移不变性,减少过拟合风险。但其实池化更多程度上是一种计算性能的一个妥协,强硬地压缩特征的同时也损失了一部分信息,所以现在的网络比较少用池化层或者使用优化后的如SoftPool。
池化层有最大池化层和平均池化层,选择一个区域内的最大值或平均值。
如输入图片为3x3,选择的池化从尺寸为2x2的
在这里插入图片描述

二、前言

CIFAR-10数据集由6万张32*32的彩色图片组成,一共有10个类别。每个类别6000张图片。其中有5万张训练图片及1万张测试图片。它的收集者是:Alex Krizhevsky, Vinod Nair, Geoffrey Hinton。
类别包括:[ ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, 'deer ’ , ’ dog ', ‘frog’, 'horse ', ‘ship’, ‘truck’]

三、电脑环境

电脑系统:Windows 10
语言环境:Python 3.8.8
编译器:Pycharm 2021.1.3
深度学习环境:TensorFlow 2.8.0,keras 2.8.0
显卡及显存:RTX 3070 8G

四、前期准备

1、导入相关依赖项

from keras.datasets import cifar10
from keras.models import *
from keras.layers import *
from tensorflow import keras
import matplotlib.pyplot as plt

2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)

只使用GPU

if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

使用cpu和gpu
os.environ[“CUDA_VISIBLE_DEVICES”] = “-1”

3、加载数据集和展示

(1)、数据集加载

# 数据加载
(x_train,y_train),(x_test,y_test) = cifar10.load_data()

这里的数据集加载方式和上篇文章mnist有些区别
运行上面命令后 会在.C:\Users\用户名(此处填你自己的)\.keras\datasets中有这么一个压缩包
在这里插入图片描述
解压后里面就是相关数据集和html文件介绍
如果直接加载数据集报错,数据集下载失败的,参考第一周文章

(2)、数据展示

直接使用第一周文章代码进行展示
分别展示训练集和测试集各自的前十张图片

# 图片展示
plt.figure(figsize=(20, 5))  # 创建一个画布,画布大小为宽20、高5(单位为英寸inch)
for i, imgs in enumerate(x_train[:10]):# 将整个画布分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
for i, imgs in enumerate(x_test[:10]):# 将整个画布分成2行10列,绘制第i+11个子图。plt.subplot(2, 10, i+11)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
plt.show()  #使用pycharm的需要加入这行代码才能将图像显示出来

在这里插入图片描述

五、数据预处理

我们需要将验证集和测数据数据增加一个维度,并将其像素从0-255划分到0-1之间减少计算量,我们还需要将标签集进行热编码处理

# 数据预处理
x_train,x_test=x_train/255.,x_test/255.
# 标签热编码
y_train,y_test = keras.utils.to_categorical(y_train),keras.utils.to_categorical(y_test)

六、搭建CNN网络

相关网络模型和参数与第一周

# 网络模型
model = Sequential([Conv2D(filters=32,kernel_size=3,activation='relu',input_shape=(28,28,1)),MaxPool2D((2,2)),Conv2D(filters=64,kernel_size=3,activation='relu'),MaxPool2D((2,2)),Flatten(),Dense(64,activation='relu'),Dense(10,activation='softmax')  # 输出为10类别
])
# 设置优化器相关
model.compile(optimizer=keras.optimizers.SGD(learning_rate=0.01),loss=keras.losses.binary_crossentropy,metrics=['acc'])
evaluate = model.evaluate(x_test,y_test)
print(evaluate)
Epoch 1/10
1667/1667 [==============================] - 22s 3ms/step - loss: 0.3390 - acc: 0.1615 - val_loss: 0.3214 - val_acc: 0.1835
Epoch 2/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3158 - acc: 0.2204 - val_loss: 0.3093 - val_acc: 0.2504
Epoch 3/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3020 - acc: 0.2741 - val_loss: 0.2947 - val_acc: 0.2989
Epoch 4/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2918 - acc: 0.3025 - val_loss: 0.2878 - val_acc: 0.3235
Epoch 5/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2858 - acc: 0.3235 - val_loss: 0.2819 - val_acc: 0.3452
Epoch 6/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2796 - acc: 0.3437 - val_loss: 0.2754 - val_acc: 0.3592
Epoch 7/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2732 - acc: 0.3641 - val_loss: 0.2696 - val_acc: 0.3739
Epoch 8/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2667 - acc: 0.3831 - val_loss: 0.2630 - val_acc: 0.3902
Epoch 9/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2604 - acc: 0.4003 - val_loss: 0.2573 - val_acc: 0.4097
Epoch 10/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2549 - acc: 0.4123 - val_loss: 0.2521 - val_acc: 0.4195
313/313 [==============================] - 1s 2ms/step - loss: 0.2521 - acc: 0.4195
[0.25214818120002747, 0.4194999933242798]

七、绘制损失函数图像和准确度图像

绘制代码与第一周文章相同

# 画准确度图
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(10)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
以上就是我本周的学习内容
在这里插入图片描述

这篇关于深度学习第二周 tensorflow实现彩色图片识别识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299128

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo