静力触探数据智能预处理(4)

2023-10-28 13:45

本文主要是介绍静力触探数据智能预处理(4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

静力触探数据智能预处理(4)

前言

数据处理方式已由手工1.0、计算机辅助2.0向人工智能3.0的趋势发展。机器学习是人工智能的基础,本文尝试应用机器学习中K均值聚类算法对孔压静力触探数据进行土的分类,分类结果不理想,非专业编写,代码仅供参考。

1、分类结果

某规范给出的分类标准:
在这里插入图片描述
按照规范进行分类结果如下:
在这里插入图片描述
应用机器学习中K均值聚类算法分类如下:
在这里插入图片描述
在这里插入图片描述
分类结果不理想,机器学习参数调试不正确。

2、聚类算法原理简介

机器学习中有两个重要的任务,即分类和聚类。

分类算法有逻辑回归、支持向量机、决策树、随机森林等。

聚类算法有K均值聚类、层次聚类、密度聚类、谱聚类、EM聚类、模糊聚类等。

K均值聚类是一种常用的无监督学习算法,用于将数据点划分为不同的簇,使得同一簇内的数据点彼此相似度较高,不同簇之间的数据点相似度较低。这个算法的目标是将数据点分为K个簇,其中K是用户定义的参数。K均值聚类的原理相对简单,主要思想是通过迭代寻找K个簇的中心点,将每个数据点分配给距离其最近的中心点,然后更新中心点的位置,直到满足停止条件为止。
实现步骤如下:
1、选择要分成的簇的数量K;
2、随机初始化K个中线点,这些中心点可以是从数据集中随机选择的数据点;
3、重复以下过程,直到满足迭代停止条件:
a、将每个数据点分配到距离其最近的中心点所属的 簇;
b、对每个簇,计算所有数据点的平均值,并将其作为新的中心点。
停止条件通常可以是以下之一:
(1)中心点不再改变或者改变非常小;
(2)数据点不再改变其所属簇。

3、机器学习库安装

scikit-learn是机器学习领域重要的开源库,包含目前流行的聚类算法。需要安装最新的Python版本和scikit-learn存储库,将conda添加至环境变量后,直接可以用pip安装,如下所示:

pip install scikit-learn

安装完毕后检查电脑中库的版本

import sklearn
print(sklearn.--version--)

即安装完成。

4、代码分享

实现本博文所示结果,完整代码如下:

close all
clear
clc[inFileName,PathName] = uigetfile('*.txt',...'选择静探数据文件','MultiSelect','on');filename = strcat(PathName,inFileName);% 将静探数据读取出来
data_jt = importdata(filename);% 剔除重复值
[data_jt01,ia] = unique(data_jt(:,1),'rows','stable');
data_jt = data_jt(ia,:);% 一共有五列数据,分别为深度、锥尖、侧壁、孔压、角度。
deepth = data_jt(:,1);% 单位为m
qc = data_jt(:,2);    % 单位为mPa
fs = 0.1*data_jt(:,3);    % 单位为0.01mPa
ut = 0.01*data_jt(:,4);    % 单位为0.1mPau0 = 0.01*(deepth+18.5)*1.05*9.79363; % 单位为0.1mPa
Qt = qc + (1 - 0.75)*ut*10; % 孔压修正锥尖阻力,单位mPa
P = 2*10^3*deepth*9.79363*10^-6; % 土的总自重压力,单位mPa
Bq = (10*ut - 10*u0)./(qc - P);  %孔隙压力参数比
% Bq(Bq<0) = 0.4; % 任意设的一个阈值
Bqpre1 = 0.2321*Qt + 0.06;
Bqpre2 = 0.0714*(Qt - 1);name = cell(length(Qt),1);
y_name = zeros(length(Qt),1);
y_color = cell(length(Qt),1);
for i = 1:length(Qt)if Qt(i) <= 0.8name(i) = cellstr('软土');
%         y_name(i) = Bq(i);y_name(i) = Qt(i);y_color(i) = cellstr('r');elseif Bq(i) > Bqpre1(i)name(i) = cellstr('黏土');
%         y_name(i) = Bq(i);y_name(i) = Qt(i);y_color(i) = cellstr('b');elseif (Bq(i) <= Bqpre1(i) ) & (Bq(i) >= Bqpre2(i))name(i) = cellstr('粉质黏土');
%         y_name(i) = Bq(i);y_name(i) = Qt(i);y_color(i) = cellstr('g');elseif Bq(i) < Bqpre2(i) & Bq(i) > 0.02name(i) = cellstr('粉土');
%         y_name(i) = Bq(i);y_name(i) = Qt(i);y_color(i) = cellstr('y');elsename(i) = cellstr('砂土');
%         y_name(i) = Bq(i);y_name(i) = Qt(i);y_color(i) =cellstr( 'k');end
endX = [Qt/10,Bq/100];
[idx,C] = kmeans(X,6);
figure(1),plot(X(:,1),X(:,2),'k*');x1 = min(X(:,1)):0.01:max(X(:,1));
x2 = min(X(:,2)):0.01:max(X(:,2));
[x1G,x2G] = meshgrid(x1,x2);
XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plotidx2Region = kmeans(XGrid,6,'MaxIter',100,'Start',C);figure(2);
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...[0,0.5,0.5;0.5,0,0.5;0.5,0.5,0],'..');
hold on;
plot(X(:,1),X(:,2),'k*','MarkerSize',5);
title 'CPTU Data';
xlabel 'Qt';
ylabel 'Bq'; 
% legend('Region 1','Region 2','Region 3','Data','Location','SouthEast');
hold off;% opts = statset('Display','final');
% [idx,C] = kmeans(X,6,'Distance','cityblock',...
%     'Replicates',100,'Options',opts);
% 
% figure;
% plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
% hold on
% plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
% plot(X(idx==3,1),X(idx==3,2),'c.','MarkerSize',12)
% plot(X(idx==4,1),X(idx==4,2),'y.','MarkerSize',12)
% plot(X(idx==5,1),X(idx==5,2),'g.','MarkerSize',12)
% plot(X(idx==6,1),X(idx==6,2),'m.','MarkerSize',12)
% 
% plot(C(:,1),C(:,2),'kx',...
%      'MarkerSize',15,'LineWidth',3) 
% legend('1 软土','2 黏土','3 粉质黏土','4 粉质黏土','5 粉土','6 粉质黏土',...
%        'Location','best')
% title 'CPTU data'
% xlabel 'Qt';
% ylabel 'Bq'; 
% hold off

编程水平有限,本代码尚不成熟,不足之处指出改正,勿作他用。

这篇关于静力触探数据智能预处理(4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/293613

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.