【考研数学】概率论与数理统计 —— 第七章 | 参数估计(1,基本概念及点估计法)

本文主要是介绍【考研数学】概率论与数理统计 —— 第七章 | 参数估计(1,基本概念及点估计法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 引言
  • 一、参数估计的概念
  • 二、参数的点估计
    • 2.1 矩估计法
    • 2.2 最大似然估计法
  • 写在最后


引言

我们之前学了那么多分布,如正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),泊松分布 P ( λ ) P(\lambda) P(λ) 等等,都是在已知 μ , σ , λ \mu,\sigma,\lambda μ,σ,λ 的情况下。那这些值是怎么来的呢?参数估计便可以帮助我们回答这一问题。


一、参数估计的概念

所谓参数估计,即总体 X X X 的分布已知,但其中分布中含有未知参数 θ \theta θ(或多个参数),从总体 X X X 中取简单随机样本 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) ,且 ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn) 为样本观察值,利用样本对参数进行估计,称为参数估计。参数估计可分为点估计区间估计


二、参数的点估计

设总体 X X X 的分布已知,但其中分布中含有未知参数,从总体 X X X 中取简单随机样本 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) ,且 ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn) 为其观察值。若用统计量 θ ^ ( X 1 , X 2 , ⋯ , X n ) \widehat{\theta}(X_1,X_2,\cdots,X_n) θ (X1,X2,,Xn) 估计参数 θ \theta θ ,称其为参数 θ \theta θ 的估计量(本质上是一个随机变量),将样本观察值代入,称 θ ^ ( x 1 , x 2 , ⋯ , x n ) \widehat{\theta}(x_1,x_2,\cdots,x_n) θ (x1,x2,,xn) 为参数 θ \theta θ 的估计值(本质上是一个常数)。

常见的点估计法有矩估计法最大似然估计法

2.1 矩估计法

1. 矩估计的基本思想

设总体为 X X X ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) 为来自总体的简单随机样本,称

μ k = E ( X k ) ( k = 1 , 2 , ⋯ ) \mu_k=E(X^k)(k=1,2,\cdots) μk=E(Xk)(k=1,2,) 为总体 X X X k k k 阶原点矩;

A k = 1 n ∑ X i k ( k = 1 , 2 , ⋯ ) A_k=\frac{1}{n}\sum X_i^k(k=1,2,\cdots) Ak=n1Xik(k=1,2,) 为样本的 k k k 阶原点矩,特别地, A 1 = X ‾ A_1=\overline{X} A1=X

B k = 1 n ∑ ( X i − X ‾ ) k ( k = 1 , 2 , ⋯ ) B_k=\frac{1}{n}\sum (X_i-\overline{X})^k(k=1,2,\cdots) Bk=n1(XiX)k(k=1,2,) 为样本的 k k k 阶中心距。

矩估计法的依据就是大数定律,由独立同分布的大数定律,有 A k A_k Ak 依概率收敛于 μ k ( k = 1 , 2 , ⋯ ) . \mu_k(k=1,2,\cdots). μk(k=1,2,).

2. 矩估计法的基本步骤

C a e s I : Caes\space I: Caes I: 含有一个参数 θ \theta θ

第一步,求 E ( X ) E(X) E(X) E ( X 2 ) E(X^2) E(X2)

第二步,令 E ( X ) = X ‾ E(X)=\overline{X} E(X)=X E ( X 2 ) = A 2 E(X^2)=A_2 E(X2)=A2 ,解出 θ \theta θ 的表达式,将观察值代入即得到估计值。

C a s e I I : Case\space II: Case II: 含有两个参数 θ 1 , θ 2 \theta_1,\theta_2 θ1,θ2

第一步,求 E ( X ) E(X) E(X) E ( X 2 ) E(X^2) E(X2)

第二步,令 E ( X ) = X ‾ , E ( X 2 ) = A 2 , D ( X ) = B 2 E(X)=\overline{X},E(X^2)=A_2,D(X)=B_2 E(X)=X,E(X2)=A2,D(X)=B2 ,解出 θ 1 , θ 2 \theta_1,\theta_2 θ1,θ2 的表达式,将观察值代入即得到估计值。

】设总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) 为来自总体的简单随机样本。(1)设 μ = 2 \mu=2 μ=2 ,求参数 σ 2 \sigma^2 σ2 的矩估计量;(2)设 μ \mu μ 未知,求参数 σ 2 \sigma^2 σ2 的矩估计量。

解:(1) E ( X ) = 2 , E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = σ 2 + 4 E(X)=2,E(X^2)=D(X)+[E(X)]^2=\sigma^2+4 E(X)=2,E(X2)=D(X)+[E(X)]2=σ2+4 。令 σ 2 + 4 = A 2 = 1 n ∑ X i 2 \sigma^2+4=A_2=\frac{1}{n}\sum X_i^2 σ2+4=A2=n1Xi2 σ ^ 2 = 1 n ∑ i = 1 n X i 2 − 4. \widehat{\sigma}^2=\frac{1}{n}\sum_{i=1}^nX_i^2-4. σ 2=n1i=1nXi24. (2) E ( X ) = μ , E ( X 2 ) = σ 2 + μ 2 E(X)=\mu,E(X^2)=\sigma^2+\mu^2 E(X)=μ,E(X2)=σ2+μ2 。令 E ( X ) = X ‾ , E ( X 2 ) = A 2 E(X)=\overline{X},E(X^2)=A_2 E(X)=X,E(X2)=A2 ,可计算得到矩估计量: σ ^ 2 = 1 n ∑ i = 1 n X i 2 − X ‾ 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 . \widehat{\sigma}^2=\frac{1}{n}\sum_{i=1}^nX_i^2-\overline{X}^2=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2. σ 2=n1i=1nXi2X2=n1i=1n(XiX)2. 对于第二问结果的变换,我们可以把 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2 n1i=1n(XiX)2 拆开,写成 1 n ∑ i = 1 n ( X i 2 − 2 X i X ‾ + X ‾ 2 ) = 1 n ( ∑ i = 1 n X i 2 − 2 X ‾ ∑ i = 1 n X i + n X ‾ 2 ) = 1 n ∑ i = 1 n X i 2 − X ‾ 2 . \frac{1}{n}\sum_{i=1}^n(X_i^2-2X_i\overline{X}+\overline{X}^2)=\frac{1}{n}\bigg(\sum_{i=1}^nX_i^2-2\overline{X}\sum_{i=1}^nX_i+n\overline{X}^2\bigg)=\frac{1}{n}\sum_{i=1}^nX_i^2-\overline{X}^2. n1i=1n(Xi22XiX+X2)=n1(i=1nXi22Xi=1nXi+nX2)=n1i=1nXi2X2.

2.2 最大似然估计法

设总体为 X X X ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) 为来自总体的简单随机样本, ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn) 为其观察值。样本 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn) 的概率成为似然函数,记为 L ( θ ) L(\theta) L(θ) L ( θ 1 , θ 2 ) L(\theta_1,\theta_2) L(θ1,θ2)

C a s e I : \pmb{Case\space I:} Case I: 总体 X X X 为离散型(分布律已知,但未知参数)

第一步:似然函数
L = P { X 1 = x 1 , X 2 = x 2 , ⋯ , X n = x n } = P { X 1 = x 1 } P { X 2 = x 2 } ⋯ P { X n = x n } = P { X = x 1 } P { X = x 2 } ⋯ P { X = x n } L=P\{X_1=x_1,X_2=x_2,\cdots,X_n=x_n\}=P\{X_1=x_1\}P\{X_2=x_2\}\cdots P\{X_n=x_n\}=P\{X=x_1\}P\{X=x_2\}\cdots P\{X=x_n\} L=P{X1=x1,X2=x2,,Xn=xn}=P{X1=x1}P{X2=x2}P{Xn=xn}=P{X=x1}P{X=x2}P{X=xn}

第二步:对似然函数 L L L 两边取对数 ln ⁡ L \ln L lnL

第三步: (1) 若 ln ⁡ L \ln L lnL 只含有一个参数 θ \theta θ ,令 d ( ln ⁡ L ) / d θ = 0 d(\ln L)/d\theta=0 d(lnL)/dθ=0 ,解出驻点 θ ^ = θ ^ ( x 1 , x 2 , ⋯ , x n ) \widehat{\theta}=\widehat{\theta}(x_1,x_2,\cdots,x_n) θ =θ (x1,x2,,xn)(估计值),从而可以得到最大似然估计量 θ ^ = θ ^ ( X 1 , X 2 , ⋯ , X n ) \widehat{\theta}=\widehat{\theta}(X_1,X_2,\cdots,X_n) θ =θ (X1,X2,,Xn)

(2)若 ln ⁡ L \ln L lnL 含有两个参数 θ 1 , θ 2 \theta_1,\theta_2 θ1,θ2 ,令 ∂ ln ⁡ L / ∂ θ 1 = 0 , ∂ ln ⁡ L / ∂ θ 2 = 0 \partial \ln L/\partial \theta_1=0,\partial \ln L/\partial \theta_2=0 lnL/θ1=0,lnL/θ2=0 ,解出驻点即可得到估计值。

C a s e I I : \pmb{Case\space II:} Case II: 总体 X X X 为连续型(概率密度 f ( x ) f(x) f(x) 已知,但含有未知参数)

第一步:似然函数 L = f ( x 1 ) f ( x 2 ) ⋯ f ( x n ) ; L=f(x_1)f(x_2)\cdots f(x_n); L=f(x1)f(x2)f(xn); 其余步骤同上。

】设总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) 为来自总体的简单随机样本。设 μ = 2 \mu=2 μ=2 ,求参数 σ 2 \sigma^2 σ2 的矩估计量。

解: 似然函数为 L = f ( x 1 ) f ( x 2 ) ⋯ f ( x n ) = ( 1 2 π ) n ⋅ ( σ 2 ) − n 2 E X P { − 1 2 σ 2 ∑ i = 1 n ( x i − 2 ) 2 } . L=f(x_1)f(x_2)\cdots f(x_n)=\big(\frac{1}{\sqrt{2\pi}}\big)^n\cdot (\sigma^2)^{-\frac{n}{2}}EXP\big\{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-2)^2\big\}. L=f(x1)f(x2)f(xn)=(2π 1)n(σ2)2nEXP{2σ21i=1n(xi2)2}. ln ⁡ L = n ln ⁡ ( 1 2 π ) − n 2 ln ⁡ σ 2 − 1 2 σ 2 ∑ i = 1 n ( x i − 2 ) 2 . \ln{L}=n\ln\big(\frac{1}{\sqrt{2\pi}}\big)-\frac{n}{2}\ln\sigma^2-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-2)^2. lnL=nln(2π 1)2nlnσ22σ21i=1n(xi2)2. d ln ⁡ L d ( σ 2 ) = − n 2 1 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − 2 ) 2 = 0 \frac{d\ln L}{d(\sigma^2)}=-\frac{n}{2}\frac{1}{\sigma^2}+\frac{1}{2\sigma^4}\sum_{i=1}^n(x_i-2)^2=0 d(σ2)dlnL=2nσ21+2σ41i=1n(xi2)2=0 可解得 σ 2 \sigma^2 σ2 的最大似然估计量为: σ ^ 2 = 1 n ∑ i = 1 n ( x i − 2 ) 2 . \widehat{\sigma}^2=\frac{1}{n}\sum_{i=1}^n(x_i-2)^2. σ 2=n1i=1n(xi2)2.


写在最后

以上便是用点估计法对总体分布的参数进行近似的方法,既然只是估计,那肯定会有误差,到底我们这样估计好不好呢,下一篇文章我们来学习参数估计量的评价标准。

这篇关于【考研数学】概率论与数理统计 —— 第七章 | 参数估计(1,基本概念及点估计法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/293026

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

【Rocketmq入门-基本概念】

Rocketmq入门-基本概念 名词解释名称服务器(NameServer)消息队列(Message Queue)主题(Topic)标签(Tag)生产者(Producer)消费者(Consumer)拉取模式(Pull)推送模式(Push)消息模型(Message Model) 关键组件Broker消息存储工作流程 名词解释 名称服务器(NameServer) 定义: 名称服务器