凸包算法Jarvis's march步进法和Graham扫描法的原理及实现

2023-10-28 08:40

本文主要是介绍凸包算法Jarvis's march步进法和Graham扫描法的原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

凸包概念

在二维欧几里得空间中,凸包可想象为一条刚好包著所有点的橡皮圈。
        用自己的话说就是在一个点集中,能够包含所有点的凸多边形(所有的点都能落入多边形的内部)。专业的描述可以通过百度百科了解。在作者Kyle Loudon的《Mastering Algorithms with C》一书的中文版中描述到一个点集的凸包是指包含该点集中的所有点的最小凸多边形。如果一个多边形内任意两点之间的连线完全包含在该多边形内,则称这个多边形是凸多边形;否则多边形就是凹的。要想画一个点集的凸包,可把它假想成一块板子上的钉子。如果用细线将最外层的钉子逐个连接起来,那么细线所围成的形状就是凸包。如下图所示a为凸包,b为凹多边形。     

如图c所示所有的黑色点表示一个点集,P1~P8表示生成生成凸包的点集。
                                                   

                                          
         在这里介绍两种求有限点集的凸包,一种Jarvis's march的步进法,另一种是Grahamd的扫描法。本文档代码实现在Qt5.7.0环境下,仅供作为参考,不保证直接拿去使用没有问题。

通用函数

1)共线情况找出距离远的点

#define SEGMENTLEN(x0,y0,x1,y1) (sqrt(pow(((x1)-(x0)), 2.0) + pow(((y1)-(y0)), 2.0)))

2)判断点的位置(上边/下边)

qreal Convex::comparePointClock(const QPointF &point_0, const QPointF &point_c, const QPointF &point_i)
{return ((point_i.x() - point_0.x())*(point_c.y() - point_0.y()) - (point_i.y() - point_0.y())*(point_c.x() - point_0.x()));
}

3)删除重复坐标

quint32 Convex::removeRepeatPoints(QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return 0;QVector<QPointF> tempVecPorint;tempVecPorint = vecPoints;vecPoints.clear();QPointF tempPoint;while (tempVecPorint.size()){tempPoint = tempVecPorint.at(0);tempVecPorint.removeAll(tempPoint);vecPoints.push_back(tempPoint);}return vecPoints.size();
}

4)获取最小坐标

QPointF Convex::getMinimumPoint(const QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return QPointF();QPointF minPoint = vecPoints.at(0);quint16 point_x = vecPoints.at(0).x(), point_y = vecPoints.at(0).y();for (QVector<QPointF>::const_iterator it = vecPoints.constBegin(); it != vecPoints.constEnd(); it++){//比较Y坐标,找Y坐标最小的if (it->y() < minPoint.y()){minPoint = (*it);}else{//Y坐标相同,找X坐标小的if (it->y() == minPoint.y() && it->x() < minPoint.x()){minPoint = (*it);}}}return minPoint;
}

Jarvis's march 步进算法,复杂度O(nH),H为点的个数

步骤:

1)找到坐标最下的点,此点必定在凸包点集中,(如果出现纵坐标最小的点有多个,那么在这些点中找到横坐标最小的点,即点集中最左下角的点)起始点作为P_0,并把其入栈。

2)遍历点集利用向量叉积的方法判断点是在线的上边(左边)还是下边(右边),设第二个点为P_c,遍历的点为P_i。如果向量叉积结果>0说明P_i在P_0P_c连线的下边(右边),<0说明P_i在P_0P_c连线的上边(左边),==0说明P_i在P_0P_c连线上。如果点在直线的下方则更新P_c为P_i;如果在线上的话,找到距离P_0较远的点作为P_c,然后把P_c作为P_0入栈,依次类推直到遍历一周再次到达第一个入栈的点。

具体实现源码如下:

//Jarvis's march 算法,O(nH),H为点的个数。
qint8 Convex::getConvexHullJarvis(const QVector<QPointF> &vecSourPoints, QVector<QPointF> &vecTarPoints)
{if (vecSourPoints.isEmpty())return -1;QPointF minPoint;QPointF lowPoint, point_0, point_i, point_c;qreal count = 0,z = 0;qreal length_1, length_2;QVector<QPointF> tempVecPoint(vecSourPoints);vecTarPoints.clear();//删除重复坐标if (removeRepeatPoints(tempVecPoint) <= 0)return -1;//查找最小坐标minPoint = getMinimumPoint(tempVecPoint);lowPoint = minPoint;point_0 = lowPoint;do {//起始点point_0压入凸包点集中vecTarPoints.push_back(point_0);count = 0;for (QVector<QPointF>::iterator it = tempVecPoint.begin(); it != tempVecPoint.end(); it++){//跳过起始坐标if ((*it) == point_0)continue;count++;if (count == 1) //把第一个遍历的点作为point_c{point_c = (*it);continue;}//如果z>0则point在point_i和point_c连线的下方,z<0则point_i在连线的上方,z=0则point_i共线z = comparePointClock(point_0,point_c,(*it));//((it->x() - point_0.x())*(point_c.y() - point_0.y()) - (it->y() - point_0.y())*(point_c.x() - point_0.x()));if (z > 0){point_c = (*it);}else if (z == 0){//共线情况找出距离point_0较远的那个点作为point_clength_1 = SEGMENTLEN(point_0.x(),point_0.y(),it->x(),it->y());length_2 = SEGMENTLEN(point_0.x(), point_0.y(), point_c.x(), point_c.y());if (length_1 > length_2){point_c = (*it);}}}point_0 = point_c;} while (point_0 != lowPoint);vecTarPoints.push_back(lowPoint);if (vecTarPoints.isEmpty())return -1;return 0;
}

Graham 扫描算法,复杂度O(nlgn)

步骤:

1)与Jarvis's march算法一样找到坐标最下的点作为P_0。

2)对一批无序的点集中的点按照极角从小到大进行排序,如果极角相同则按由近及远进行排序(以P_0为起始点)。

按极角从小到大进行排序:

QPointF m_point0;
bool comPolarAngle(const QPointF &point_1, const QPointF &point_2)
{qreal z = ((point_2.x() - m_point0.x())*(point_1.y() - m_point0.y()) - (point_2.y() - m_point0.y())*(point_1.x() - m_point0.x()));if (fabs(z) < 1e-6){qreal length_1 = SEGMENTLEN(m_point0.x(), m_point0.y(), point_1.x(), point_1.y());qreal length_2 = SEGMENTLEN(m_point0.x(), m_point0.y(), point_2.x(), point_2.y());return length_1 > length_2;}else{return z < 0;}
}
bool Convex::sortByPolarAngle(QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return false;QVector<QPointF> tempVecPoint(vecPoints);tempVecPoint.removeOne(m_point0);qreal z = 0;qSort(tempVecPoint.begin(), tempVecPoint.end(), comPolarAngle);tempVecPoint.push_front(m_point0);vecPoints = tempVecPoint;return true;
}

3)让排序后的点集中的前三个点依次入栈,然后开始遍历其后点,如果其后点与栈顶两个点不构成向左旋转的关系,则弹出栈顶元素,直到没有点需要出栈,那么就将当前点入栈,依次循环直到算有点都遍历结束。

具体实现源码:

//Graham 扫描算法,O(nlgn)。
qint8 Convex::getConvecHullGraham(const QVector<QPointF> &vecSourPoints, QVector<QPointF> &vecTarPoints)
{if (vecSourPoints.isEmpty())return -1;QVector<QPointF> tempVecPoint(vecSourPoints);//删除重复坐标if (removeRepeatPoints(tempVecPoint) <= 0)return -1;//查找最小坐标QPointF minPoint;minPoint = getMinimumPoint(tempVecPoint);m_point0 = minPoint;//按极角进行排序if(!sortByPolarAngle(tempVecPoint))return -1;vecTarPoints.clear();vecTarPoints.push_back(tempVecPoint.at(0));vecTarPoints.push_back(tempVecPoint.at(1));vecTarPoints.push_back(tempVecPoint.at(2));qint32 vecTop = 2;for (int i = 3; i < tempVecPoint.size(); i++){while (vecTop > 0&& (comparePointClock(vecTarPoints.at(vecTop - 1), vecTarPoints.at(vecTop), tempVecPoint.at(i)) >= 0)){vecTop--;vecTarPoints.pop_back();}vecTarPoints.push_back(tempVecPoint.at(i));vecTop++;}vecTarPoints.push_back(minPoint);if (vecTarPoints.isEmpty())return -1;return 0;
}

注:源码.h和.cpp文件请在本人GitHub中浏览,望与参考的人一起学习进步!

地址:https://github.com/CMwshuai/ConvexHull.git

这篇关于凸包算法Jarvis's march步进法和Graham扫描法的原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292042

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Golang中map缩容的实现

《Golang中map缩容的实现》本文主要介绍了Go语言中map的扩缩容机制,包括grow和hashGrow方法的处理,具有一定的参考价值,感兴趣的可以了解一下... 目录基本分析带来的隐患为什么不支持缩容基本分析在 Go 底层源码 src/runtime/map.go 中,扩缩容的处理方法是 grow