凸包算法Jarvis's march步进法和Graham扫描法的原理及实现

2023-10-28 08:40

本文主要是介绍凸包算法Jarvis's march步进法和Graham扫描法的原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

凸包概念

在二维欧几里得空间中,凸包可想象为一条刚好包著所有点的橡皮圈。
        用自己的话说就是在一个点集中,能够包含所有点的凸多边形(所有的点都能落入多边形的内部)。专业的描述可以通过百度百科了解。在作者Kyle Loudon的《Mastering Algorithms with C》一书的中文版中描述到一个点集的凸包是指包含该点集中的所有点的最小凸多边形。如果一个多边形内任意两点之间的连线完全包含在该多边形内,则称这个多边形是凸多边形;否则多边形就是凹的。要想画一个点集的凸包,可把它假想成一块板子上的钉子。如果用细线将最外层的钉子逐个连接起来,那么细线所围成的形状就是凸包。如下图所示a为凸包,b为凹多边形。     

如图c所示所有的黑色点表示一个点集,P1~P8表示生成生成凸包的点集。
                                                   

                                          
         在这里介绍两种求有限点集的凸包,一种Jarvis's march的步进法,另一种是Grahamd的扫描法。本文档代码实现在Qt5.7.0环境下,仅供作为参考,不保证直接拿去使用没有问题。

通用函数

1)共线情况找出距离远的点

#define SEGMENTLEN(x0,y0,x1,y1) (sqrt(pow(((x1)-(x0)), 2.0) + pow(((y1)-(y0)), 2.0)))

2)判断点的位置(上边/下边)

qreal Convex::comparePointClock(const QPointF &point_0, const QPointF &point_c, const QPointF &point_i)
{return ((point_i.x() - point_0.x())*(point_c.y() - point_0.y()) - (point_i.y() - point_0.y())*(point_c.x() - point_0.x()));
}

3)删除重复坐标

quint32 Convex::removeRepeatPoints(QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return 0;QVector<QPointF> tempVecPorint;tempVecPorint = vecPoints;vecPoints.clear();QPointF tempPoint;while (tempVecPorint.size()){tempPoint = tempVecPorint.at(0);tempVecPorint.removeAll(tempPoint);vecPoints.push_back(tempPoint);}return vecPoints.size();
}

4)获取最小坐标

QPointF Convex::getMinimumPoint(const QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return QPointF();QPointF minPoint = vecPoints.at(0);quint16 point_x = vecPoints.at(0).x(), point_y = vecPoints.at(0).y();for (QVector<QPointF>::const_iterator it = vecPoints.constBegin(); it != vecPoints.constEnd(); it++){//比较Y坐标,找Y坐标最小的if (it->y() < minPoint.y()){minPoint = (*it);}else{//Y坐标相同,找X坐标小的if (it->y() == minPoint.y() && it->x() < minPoint.x()){minPoint = (*it);}}}return minPoint;
}

Jarvis's march 步进算法,复杂度O(nH),H为点的个数

步骤:

1)找到坐标最下的点,此点必定在凸包点集中,(如果出现纵坐标最小的点有多个,那么在这些点中找到横坐标最小的点,即点集中最左下角的点)起始点作为P_0,并把其入栈。

2)遍历点集利用向量叉积的方法判断点是在线的上边(左边)还是下边(右边),设第二个点为P_c,遍历的点为P_i。如果向量叉积结果>0说明P_i在P_0P_c连线的下边(右边),<0说明P_i在P_0P_c连线的上边(左边),==0说明P_i在P_0P_c连线上。如果点在直线的下方则更新P_c为P_i;如果在线上的话,找到距离P_0较远的点作为P_c,然后把P_c作为P_0入栈,依次类推直到遍历一周再次到达第一个入栈的点。

具体实现源码如下:

//Jarvis's march 算法,O(nH),H为点的个数。
qint8 Convex::getConvexHullJarvis(const QVector<QPointF> &vecSourPoints, QVector<QPointF> &vecTarPoints)
{if (vecSourPoints.isEmpty())return -1;QPointF minPoint;QPointF lowPoint, point_0, point_i, point_c;qreal count = 0,z = 0;qreal length_1, length_2;QVector<QPointF> tempVecPoint(vecSourPoints);vecTarPoints.clear();//删除重复坐标if (removeRepeatPoints(tempVecPoint) <= 0)return -1;//查找最小坐标minPoint = getMinimumPoint(tempVecPoint);lowPoint = minPoint;point_0 = lowPoint;do {//起始点point_0压入凸包点集中vecTarPoints.push_back(point_0);count = 0;for (QVector<QPointF>::iterator it = tempVecPoint.begin(); it != tempVecPoint.end(); it++){//跳过起始坐标if ((*it) == point_0)continue;count++;if (count == 1) //把第一个遍历的点作为point_c{point_c = (*it);continue;}//如果z>0则point在point_i和point_c连线的下方,z<0则point_i在连线的上方,z=0则point_i共线z = comparePointClock(point_0,point_c,(*it));//((it->x() - point_0.x())*(point_c.y() - point_0.y()) - (it->y() - point_0.y())*(point_c.x() - point_0.x()));if (z > 0){point_c = (*it);}else if (z == 0){//共线情况找出距离point_0较远的那个点作为point_clength_1 = SEGMENTLEN(point_0.x(),point_0.y(),it->x(),it->y());length_2 = SEGMENTLEN(point_0.x(), point_0.y(), point_c.x(), point_c.y());if (length_1 > length_2){point_c = (*it);}}}point_0 = point_c;} while (point_0 != lowPoint);vecTarPoints.push_back(lowPoint);if (vecTarPoints.isEmpty())return -1;return 0;
}

Graham 扫描算法,复杂度O(nlgn)

步骤:

1)与Jarvis's march算法一样找到坐标最下的点作为P_0。

2)对一批无序的点集中的点按照极角从小到大进行排序,如果极角相同则按由近及远进行排序(以P_0为起始点)。

按极角从小到大进行排序:

QPointF m_point0;
bool comPolarAngle(const QPointF &point_1, const QPointF &point_2)
{qreal z = ((point_2.x() - m_point0.x())*(point_1.y() - m_point0.y()) - (point_2.y() - m_point0.y())*(point_1.x() - m_point0.x()));if (fabs(z) < 1e-6){qreal length_1 = SEGMENTLEN(m_point0.x(), m_point0.y(), point_1.x(), point_1.y());qreal length_2 = SEGMENTLEN(m_point0.x(), m_point0.y(), point_2.x(), point_2.y());return length_1 > length_2;}else{return z < 0;}
}
bool Convex::sortByPolarAngle(QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return false;QVector<QPointF> tempVecPoint(vecPoints);tempVecPoint.removeOne(m_point0);qreal z = 0;qSort(tempVecPoint.begin(), tempVecPoint.end(), comPolarAngle);tempVecPoint.push_front(m_point0);vecPoints = tempVecPoint;return true;
}

3)让排序后的点集中的前三个点依次入栈,然后开始遍历其后点,如果其后点与栈顶两个点不构成向左旋转的关系,则弹出栈顶元素,直到没有点需要出栈,那么就将当前点入栈,依次循环直到算有点都遍历结束。

具体实现源码:

//Graham 扫描算法,O(nlgn)。
qint8 Convex::getConvecHullGraham(const QVector<QPointF> &vecSourPoints, QVector<QPointF> &vecTarPoints)
{if (vecSourPoints.isEmpty())return -1;QVector<QPointF> tempVecPoint(vecSourPoints);//删除重复坐标if (removeRepeatPoints(tempVecPoint) <= 0)return -1;//查找最小坐标QPointF minPoint;minPoint = getMinimumPoint(tempVecPoint);m_point0 = minPoint;//按极角进行排序if(!sortByPolarAngle(tempVecPoint))return -1;vecTarPoints.clear();vecTarPoints.push_back(tempVecPoint.at(0));vecTarPoints.push_back(tempVecPoint.at(1));vecTarPoints.push_back(tempVecPoint.at(2));qint32 vecTop = 2;for (int i = 3; i < tempVecPoint.size(); i++){while (vecTop > 0&& (comparePointClock(vecTarPoints.at(vecTop - 1), vecTarPoints.at(vecTop), tempVecPoint.at(i)) >= 0)){vecTop--;vecTarPoints.pop_back();}vecTarPoints.push_back(tempVecPoint.at(i));vecTop++;}vecTarPoints.push_back(minPoint);if (vecTarPoints.isEmpty())return -1;return 0;
}

注:源码.h和.cpp文件请在本人GitHub中浏览,望与参考的人一起学习进步!

地址:https://github.com/CMwshuai/ConvexHull.git

这篇关于凸包算法Jarvis's march步进法和Graham扫描法的原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292042

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

Android Studio 配置国内镜像源的实现步骤

《AndroidStudio配置国内镜像源的实现步骤》本文主要介绍了AndroidStudio配置国内镜像源的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、修改 hosts,解决 SDK 下载失败的问题二、修改 gradle 地址,解决 gradle