阿里AAAI2018论文解读:轻量网络训练框架、GAN中文命名实体识别、英俄翻译等

本文主要是介绍阿里AAAI2018论文解读:轻量网络训练框架、GAN中文命名实体识别、英俄翻译等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击有惊喜

【论文简介】像点击率预估这样的在线实时响应系统对响应时间要求非常严格,结构复杂,层数很深的深度模型不能很好的满足严苛的响应时间的限制。为了获得满足响应时间限制的具有优良表现的模型,我们提出了一个新型框架:训练阶段,同时训练繁简两个复杂度有明显差异的网络,简单的网络称为轻量网络(light net),复杂的网络称为助推器网络(booster net),相比前者,有更强的学习能力。两网络共享部分参数,分别学习类别标记,此外,轻量网络通过学习助推器的soft target来模仿助推器的学习过程,从而得到更好的训练效果。测试阶段,仅采用轻量网络进行预测。我们的方法被称作“火箭发射”系统。在公开数据集和阿里巴巴的在线展示广告系统上,我们的方法在不提高在线响应时间的前提下,均提高了预测效果,展现了其在在线模型上应用的巨大价值。

【方法框架】

3eba9ed683c2ab8a40902087513e9d34a3e43ffe

图1:网络结构

如图1所示,训练阶段,我们同时学习两个网络:Light Net 和Booster Net, 两个网络共享部分信息。我们把大部分的模型理解为表示层学习和判别层学习,表示层学习的是对输入信息做一些高阶处理,而判别层则是和当前子task目标相关的学习,我们认为表示层的学习是可以共享的,如multi task learning中的思路。所以在我们的方法里,共享的信息为底层参数(如图像领域的前几个卷积层,NLP中的embedding), 这些底层参数能一定程度上反应了对输入信息的基本刻画。

【论文链接】https://arxiv.org/abs/1708.04106

2. 基于对抗学习的众包标注用于中文命名实体识别

《Adversarial Learning for Chinese NER from Crowd Annotations》

【团队名称】业务平台事业部

【主要作者】杨耀晟,张梅山,陈文亮,王昊奋,张伟,张民

【文章简介】为了能用较低的成本获取新的标注数据,我们采用众包标注的方法来完成这个任务。众包标注的数据是没有经过专家标注员审核的,所以它会包含一定的噪声。在这篇文章中,我们提出一种在中文NER任务上,利用众包标注结果来训练模型的方法。受到对抗学习的启发,我们在模型中使用了两个双向LSTM模块,来分别学习众包标注数据中的公有信息和属于不同标注员的私有信息。对抗学习的思想体现在公有块的学习过程中,以不同标注员作为分类目标进行对抗学习,从而优化公有模块的学习质量,使之收敛于真实数据(专家标注数据)。我们认为这两个模块学习到的信息对于任务学习都有积极作用,并在最终使用CRF层完成ner标注。

【模型如下】

cd7de59dbe43247bbc639472bb0e133b143f67ab

3. 句法敏感的实体表示用于神经网络关系抽取

《Syntax-aware Entity Embedding for Neural Relation Extraction》

【团队名称】业务平台事业部

【作者】何正球,陈文亮,张梅山,李正华,张伟,张民

【论文简介】句法敏感的实体表示用于神经网络关系抽取。关系抽取任务大规模应用的一个主要瓶颈就是语料的获取。近年来基于神经网络的关系抽取模型把句子表示到一个低维空间。这篇论文的创新在于把句法信息加入到实体的表示模型里。首先,基于Tree-GRU,把实体上下文的依存树放入句子级别的表示。其次,利用句子间和句子内部的注意力,来获得含有目标实体的句子集合的表示。

【主要方法】

01e9536150e82154ffbd48059cd34e9457ab409a

首先,基于依存句法树,利用基于树结构的循环神经网络(Tree-GRU)模型生成实体在句子级别的表示。如上图所示,有别于仅仅使用实体本身,我们能够更好地表达出长距离的信息。具体的实体语义表示如下图所示。我们使用Tree-GRU来获得实体的语义表示。

75a3cd40ba52af21a75672fe89f82be6f633d2e2

其次,利用基于子节点的注意力机制(ATTCE,上图)和基于句子级别的实体表示注意力机制(ATTEE,下图)来减轻句法错误和错误标注的负面影响。

f266a5964728b85d5dd514ca5869b81e0e101bae

4. 一种基于词尾预测的提高英俄翻译质量的方法

Improved English to Russian Translation by Neural Suffix Prediction

【团队】iDst-NLP-翻译平台

【作者】宋楷/Kai Song(阿里巴巴), 张岳/Yue Zhang(新加坡科技设计大学), 张民/Min Zhang (苏州大学), 骆卫华/Weihua Luo(阿里巴巴)

【论文简介】神经网络翻译模型受限于其可以使用的词表大小,经常会遇到词表无法覆盖源端和目标端单词的情况,特别是当处理形态丰富的语言(例如俄语、西班牙语等)的时候,词表对全部语料的覆盖度往往不够,这就导致很多“未登录词”的产生,严重影响翻译质量。

已有的工作主要关注在如何调整翻译粒度以及扩展词表大小两个维度上,这些工作可以减少“未登录词”的产生,但是语言本身的形态问题并没有被真正研究和专门解决过。

我们的工作提出了一种创新的方法,不仅能够通过控制翻译粒度来减少数据稀疏,进而减少“未登录词”,还可以通过一个有效的词尾预测机制,大大降低目标端俄语译文的形态错误,提高英俄翻译质量。通过和多个比较有影响力的已有工作(基于subword和character的方法)对比,在5000万量级的超大规模的数据集上,我们的方法可以成功的在基于RNN和Transformer两种主流的神经网络翻译模型上得到稳定的提升。

【词尾预测网络】在NMT的解码阶段,每一个解码步骤分别预测词干和词尾。词干的生成和NMT原有的网络结构一致。额外的,利用当前step生成的词干、当前decoder端的hidden state和源端的source context信息,通过一个前馈神经网络(Feedforward neural network)生成当前step的词尾。网络结构如下图:



点击有惊喜


这篇关于阿里AAAI2018论文解读:轻量网络训练框架、GAN中文命名实体识别、英俄翻译等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291992

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O