systrace/perfetto如何看surfaceflinger的vsync信号方法-android framework实战车载手机系统开发

本文主要是介绍systrace/perfetto如何看surfaceflinger的vsync信号方法-android framework实战车载手机系统开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

hi,粉丝朋友们:
大家好!近期分享了surfaceflinger相关的一些blog,有同学就对相关的一些内容产生了一些疑问。
比如:vsync查看问题,即怎么才可以说是vsync到来了。
在这里插入图片描述
比如perfetto中surfaceflinger的VSYNC脉冲经典图如上图所示的,看到一个的小方块,上升下降的方波形,那么通过看这些方块了解真实的vsync信号到来呢?

大部分同学常规方法:

第一种方法:

方波方块确定vsync,这个很多同学不了解原理的或者属于自己看trace同学,看到一个方块的脉冲,然后测量一下方块刚好耗时是16ms左右,任务一个方块就代表一个vsync周期

在这里插入图片描述
哈哈,这种想法其实一开始很多新手自己看vsync都是这样的,属于自己想当然情况,随便一个脉冲就可以反驳比如如下:
在这里插入图片描述
所以这种方式其实不准确哈,很多时候不便于理解

第二种方式:
判断变脉冲方波变化的上升下降的瞬间代表vsync来临方式。

在这里插入图片描述

这种思路和观点其实已经基本上已经算正确了,因为vsync本身是一个信号,属于瞬时的动作,上升和下降代表这个时候的vsync是有变化的。但是有一些场景有问题比如如下这种:
在这里插入图片描述上面问题是课程学员提出的,相关framework干货课程看这里:
更多framework干货课程优惠获取相关可以+V(androidframework007)
视频:https://www.bilibili.com/video/BV1ah411d7Y3
在这里插入图片描述

真实的vsync理解方法:

这个情况就可以看到如果按照上升下降理论确实这个同学说的是对的。但其实这个上升下降理解也还是缺少点理论支持,最好可以结合代码来验证一下。首先看看这个VSYNC-app信号是在哪里:
打印这个VSYNC-app信号的代码如下:

frameworks/native/services/surfaceflinger/Scheduler/DispSyncSource.cpp


void DispSyncSource::onVsyncCallback(nsecs_t vsyncTime, nsecs_t targetWakeupTime,nsecs_t readyTime) {VSyncSource::Callback* callback;{std::lock_guard lock(mCallbackMutex);callback = mCallback;}if (mTraceVsync) {//正常都进行tracevsyncmValue = (mValue + 1) % 2;//这里就是trace的值,所以只有0和1}if (callback != nullptr) {callback->onVSyncEvent(targetWakeupTime, {vsyncTime, readyTime});}
}

上面大家可能有疑问,这里

mValue = (mValue + 1) % 2

明明就是对 mValue只是个简单赋值,哪来的TRACE打印。哈哈,这里你得知道c++的符号重载,可以看看mValue的源码就了解了

class TracedOrdinal {
public:static_assert(std::is_same<bool, T>() || (std::is_signed<T>() && std::is_integral<T>()) ||std::is_same<std::chrono::nanoseconds, T>(),"Type is not supported. Please test it with systrace before adding ""it to the list.");TracedOrdinal(std::string name, T initialValue): mName(std::move(name)),mHasGoneNegative(std::signbit(initialValue)),mData(initialValue) {trace();}T get() const { return mData; }operator T() const { return get(); }TracedOrdinal& operator=(T other) { //对赋值进行重载mData = other;mHasGoneNegative = mHasGoneNegative || std::signbit(mData);trace();//打印TRACEreturn *this;}private:void trace() {if (CC_LIKELY(!ATRACE_ENABLED())) {return;}if (mNameNegative.empty()) {mNameNegative = mName + "Negative";}if (!std::signbit(mData)) {ATRACE_INT64(mName.c_str(), to_int64(mData));if (mHasGoneNegative) {ATRACE_INT64(mNameNegative.c_str(), 0);}} else {ATRACE_INT64(mNameNegative.c_str(), -to_int64(mData));ATRACE_INT64(mName.c_str(), 0);}}const std::string mName;std::string mNameNegative;bool mHasGoneNegative;T mData;
};

所以说mValue = (mValue + 1) % 2的这个赋值操作就是打印trace了,也就是说系统执行到了 DispSyncSource::onVsyncCallback就代表有vsync到来,上升和下降那种理论就说的过去了,因为上升下降代表mValue确实有变化了。但是上面方法二那个同学疑问怎么解释呢?
在这里插入图片描述
这里大家要注意看这个信号图:

在这里插入图片描述
关注VSYNC-appSf这一栏信号,是不是发现第一个绘制第一个信号value为0,在这个第一个信号绘制以前图形中其实并没有看到有任何的value。
相当于这个信号在我们这个trace中属于第一次有value情况。

那么结合我们上面的代码结论我们知道,第一次有value的trace打印了,说明肯定是有vsync的回调了,至于之前脉冲图没有打印,那一般是因为抓取时候就没有触发这个onVsyncCallback回调,所以自然不会打印出来啦。这样理解了代码再去看这个vsync脉冲图是不是好理解多了。

这篇关于systrace/perfetto如何看surfaceflinger的vsync信号方法-android framework实战车载手机系统开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291084

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听